1.Development of core outcome set for traditional Chinese medicine interventions in diabetic peripheral neuropathy.
Lu-Jie WANG ; Liang-Zhen YOU ; Chang CHANG ; Yu-Meng GENG ; Jin-Dong ZHAO ; Zhao-Hui FANG ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2025;50(14):4071-4080
This study developed a core outcome set(COS) for traditional Chinese medicine(TCM) interventions in diabetic peripheral neuropathy(DPN), standardizing evaluation metrics for TCM efficacy and providing a new framework for DPN treatment and management. A systematic search was conducted across databases, including CNKI, Wanfang, and PubMed, targeting clinical trial literature published between January 1, 2013, and January 1, 2023. The search focused on extracting outcome indicators and measurement tools used in TCM treatments for DPN. Retrospective data collection was performed from January 2018 to June 2023, involving 200 DPN patients hospitalized at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Additionally, semi-structured interviews were conducted with inpatients, outpatients, their families, and nursing staff to further refine and enhance the list of outcome indicators. After two rounds of Delphi questionnaire survey and consensus meeting, a consensus was reached. The study initially retrieved 3 421 publications, of which 170 met the inclusion criteria after review. These publications, combined with retrospective analysis and semi-structured interviews, supplemented the list of indicators. After two rounds of Delphi surveys, experts agreed on 24 indicators and 6 measurement tools. The final COS determined by expert consensus meeting included 5 domains and 13 outcome indicators: neurological function signs, quality of life, TCM syndrome score, nerve conduction velocity, current perception threshold test, fasting blood glucose, 2 h postprandial blood glucose, glycated hemoglobin, complete blood count, urinalysis, liver function test, kidney function test, and electrocardiogram.
Humans
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Retrospective Studies
;
Treatment Outcome
;
Male
;
Female
2.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Nerve Growth Factor/metabolism*
;
Diabetes Mellitus, Experimental/drug therapy*
;
TRPM Cation Channels/metabolism*
;
GAP-43 Protein/metabolism*
;
Signal Transduction
;
Diabetic Neuropathies/genetics*
;
Fibrosis
3.Role of NLRP3 inflammasome in diabetic neuropathy and prevention and treatment with traditional Chinese medicine.
Hao-Yue FENG ; Rui DING ; Qi ZHOU ; Ting-Chao WU ; Hui LI ; Xi-Tao MA ; Ren-Song YUE
China Journal of Chinese Materia Medica 2023;48(2):300-310
As one of the most frequent complications of diabetes, diabetic neuropathy often involves peripheral and central nervous systems. Neuroinflammation is the key pathogenic factor of secondary nerve injury in diabetes. NOD-like receptor pyrin domain-containing 3(NLRP3) inflammasome is a group of subcellular multiprotein complexes, including NLRP3, apoptosis associated speck-like protein(ASC), and pro-cysteinyl aspartate specific proteinase 1(pro-caspase-1). NLRP3 inflammasome is an inducer of innate immune responses. Its activation stimulates the inflammatory cascade reaction, promotes the release of inflammatory mediators, triggers cell death and uncontrolled autophagy, activates glial cells, facilitates peripheral immune cell infiltration, and initiates amyoid β(Aβ)-tau cascade reactions. As a result, it contributes to the central nerve, somatic nerve, autonomic nerve, and retinal nerve cell damage secondary to diabetes. Therefore, due to its key role in the neuroinflammation responses of the body, NLRP3 inflammasome may provide new targets for the treatment of diabetic neuropathy. With multi-target and low-toxicity advantages, traditional Chinese medicine plays a vital role in the treatment of diabetic neuropathy. Accumulating evidence has shown that traditional Chinese medicine exerts curative effects on diabetic neuropathy possibly through regulating NLRP3 inflammasome. Although the role of NLRP3 inflammasome in diabetes and related complications has been investigated in the literature, systematical studies on drugs and mechanism analysis for secondary neuropathy are still lacking. In this article, the role of NLRP3 inflammasome in diabetic neuropathy was explored, and the research progress on traditional Chinese medicine in the treatment of diabetic neuropathy through NLRP3 inflammasome was reviewed.
Humans
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional
;
Neuroinflammatory Diseases
;
Inflammation
;
Diabetes Mellitus
4.Systematic review and Meta-analysis of efficacy and safety of Tangmaikang Granules in treatment of diabetic peripheral neuropathy.
Wen-Ying XIE ; Chen ZHANG ; Jing-Yan XIN ; Wen-Hui LI ; Tao-Jing ZHANG
China Journal of Chinese Materia Medica 2023;48(2):542-554
This study aimed to explore the efficacy and safety of Tangmaikang Granules in the treatment of diabetic peripheral neuropathy(DPN). PubMed, Cochrane Library, EMbase, SinoMed, CNKI, Wanfang and VIP were retrieved for randomized controlled trial(RCT) of Tangmaikang Granules in the treatment of DPN. Cochrane handbook 5.3 was used to evaluate the quality of the inclu-ded studies, and RevMan 5.4.1 and Stata 15.1 were employed to analyze data and test heterogeneity. GRADEpro was used to assess the quality of each outcome index. Clinical effective rate was the major outcome index, while the improvement in numbness of hands and feet, pain of extremities, sluggishness or regression of sensation, sensory conduction velocity(SCV) and motor conduction velocity(MCV) of median nerve and peroneal nerve, fasting blood glucose(FBG), 2 h postprandial blood glucose(2hPBG), and glycated hemoglobin(HbA1c) and incidence of adverse reactions were considered as the minor outcome indexes. A total of 19 RCTs with 1 602 patients were eventually included. The Meta-analysis showed that the improvements in clinical effective rate(RR=1.45, 95%CI[1.32, 1.61], P<0.000 01), pain of extremities(RR=1.70, 95%CI[1.27, 2.27], P=0.000 3), MCV of peroneal nerve(MD=4.08, 95%CI[3.29, 4.86], P<0.000 01) and HbA1c(SMD=-1.23, 95%CI[-1.80,-0.66], P<0.000 1) of Tangmaikang Granules alone or in combination in the experimental group were better than those in the control group. Compared with the conditions in the control group, numbness of hands and feet(RR=1.42, 95%CI[1.12, 1.80], P=0.003), sluggishness or regression of sensation(RR=1.41, 95%CI[1.05, 1.91], P=0.02), SCV of median nerve(MD=4.59, 95%CI[0.92, 8.27], P=0.01), SCV of peroneal nerve(MD=4.68, 95%CI[3.76, 5.60], P<0.000 01) and MCV of median nerve(MD=5.58, 95%CI[4.05, 7.11], P<0.000 01) of Tangmaikang Granules in combination in the experimental group were improved by subgroup analysis. The levels of FBG(MD=-0.57, 95%CI[-1.27, 0.12], P=0.11) and 2hPBG(MD=-0.69, 95%CI[-1.70, 0.33], P=0.18) in the experimental group were similar to those in the control group after treatment with Tangmaikang Granules alone or in combination. There was no difference in the safety(RR=1.28, 95%CI[0.58, 2.82], P=0.54) of Tangmaikang Granules in the treatment of DPN between the experimental group and the control group. Tangmaikang Granules could significantly increase clinical effective rate and nerve conduction velocity as well as improve symptoms of peripheral nerve and blood glucose level, and no serious adverse reactions were identified yet. Further validation was needed in future in large-sample, multicenter, high-quality RCTs.
Humans
;
Blood Glucose
;
Diabetic Neuropathies/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycated Hemoglobin
;
Hypesthesia/drug therapy*
;
Multicenter Studies as Topic
;
Pain/etiology*
;
Treatment Outcome
;
Peripheral Nervous System Diseases/etiology*
5.Dragon-tiger fighting needling therapy in treatment of painful diabetic peripheral neuropathy: a randomized controlled trial.
Xiu-Min DENG ; Shi-Wei LIU ; Jia LEI ; Xin-Tong LI ; Hong-Ye JIANG
Chinese Acupuncture & Moxibustion 2021;41(1):23-26
OBJECTIVE:
To compare the clinical therapeutic effect on painful diabetic peripheral neuropathy (PDPN) between dragon-tiger fighting needling and pregabalin capsules.
METHODS:
A total of 60 patients with PDPN were randomized into an observation group and a control group, 30 cases in each one. On the base of treatment with routine anti-hyperglycaemic measures and nutritional neurotherapy, the dragon-tiger fighting needling was exerted at Sanyinjiao (SP 6), Zusanli (ST 36), Yinlingquan (SP 9) and Xuehai (SP 10) in the observation group, once daily. Pregabalin capsules were prescribed for oral administration in the control group, 75 mg, twice a day. The treatment for 2 weeks was as one course and 2 courses of treatment were required in total. The score of visual analogue scale (VAS), the score of MOS item short form health survey (SF-36) and nerve conduction velocity before and after treatment were compared between the two groups. The clinical therapeutic effect was evaluated in the two groups.
RESULTS:
After treatment, VAS score was reduced as compared with before treatment in the two groups (
CONCLUSION
The dragon-tiger fighting needling therapy relieves painful symptoms, improves the quality of life and increases nerve conduction velocity in the patients with diabetic peripheral neuropathy, and the therapeutic effect is better than oral administration of pregabalin capsules.
Acupuncture Points
;
Acupuncture Therapy
;
Animals
;
Diabetes Mellitus
;
Diabetic Neuropathies/drug therapy*
;
Humans
;
Quality of Life
;
Tigers
;
Treatment Outcome
6.Effects of Mitochondrial Dysfunction via AMPK/PGC-1 α Signal Pathway on Pathogenic Mechanism of Diabetic Peripheral Neuropathy and the Protective Effects of Chinese Medicine.
Chinese journal of integrative medicine 2019;25(5):386-394
Diabetic peripheral neuropathy (DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor- γ coactivator 1 α (PGC-1 α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1 α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1 α pathway and improving mitochondrial function.
AMP-Activated Protein Kinases
;
metabolism
;
Diabetic Neuropathies
;
drug therapy
;
pathology
;
Humans
;
Medicine, Chinese Traditional
;
Mitochondria
;
metabolism
;
pathology
;
Neuroprotective Agents
;
therapeutic use
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
metabolism
;
Signal Transduction
7.Exploration of Mahuang Fuzi Xixin Decoction formula syndromes based on severe cases of critical care and its application for nosocomial infection in critical care medicine including hyperpyrexia after tracheotomy and severe pain accompanied by acute myocardial infarction and diabetic peripheral neuropathy.
China Journal of Chinese Materia Medica 2019;44(18):3869-3875
Mahuang Fuzi Xixin Decoction recorded in Treatise on Febrile Diseases by Zhang Zhongjing in the Han Dynasty have been widely used in treating Yang deficiency and exogenous wind-cold syndrome by traditional Chinese medicine physicians for thousands of years. The indications of Mahuang Fuzi Xixin Decoction include bradyarrhythmia,sinus bradycardia,sick sinus node syndrome,senile exogenous,asthmatic cold,rhinitis,bronchial asthma,optic neuritis,optic atrophy,sudden blindness,sudden onset of cough,laryngeal obstruction,migraine,joint pain,low back pain,insomnia,shock,heart failure,renal failure,accompanied by fever or nosocomial infection,and hyperpyrexia after tracheotomy; dark complexion,chills,cold limbs,listlessness,fatigue,insomnia,lack of thirst,liking hot drinks,slightly swollen limbs or whole body,pale fat tongue,greasy fur,and deep pulse. Mahuang Fuzi Xixin Decoction is a potential drug for Shaoyin disease complicated with fever and pain. Tracheal intubation is an artificial ephedrine syndrome. It is necessary to distinguish Yin and Yang syndrome in treating hyperpyrexia after tracheotomy. However,it belongs to Yin syndrome,which could be treated by Mahuang Fuzi Xixin Decoction. Mahuang Fuzi Xixin Decoction is effective in the treatment of sick sinus syndrome,second degree atrioventricular block and third degree atrioventricular block. It can significantly alleviate symptoms,improve heart rate,and heart rhythm in a short period of time. However,after one year of drug withdrawal,the diseases may recur,indicating that Mahuang Fuzi Xixin Decoction may not improve the long-term prognosis of slow arrhythmia. Mahuang Fuzi Xixin Decoction is often used for fever or nosocomial infection in critical care medicine. In the treatment of critical care medicine complicated with high fever,Mahuang Fuzi Xixin Decoction is often taken continuously by stomach tube.
Critical Care
;
Cross Infection/drug therapy*
;
Diabetes Mellitus
;
Diabetic Neuropathies/complications*
;
Drugs, Chinese Herbal/pharmacology*
;
Fever/drug therapy*
;
Humans
;
Medicine, Chinese Traditional
;
Myocardial Infarction/complications*
;
Pain, Postoperative/drug therapy*
;
Phytotherapy
;
Syndrome
;
Tracheotomy/adverse effects*
8.Vascular endothelial growth factor antibody attenuates diabetic peripheral neuropathic pain in rats.
Bingbing PAN ; Huijuan DING ; Zhigang CHENG ; Zongbin SONG ; Dan XIAO ; Qulian GUO
Journal of Central South University(Medical Sciences) 2018;43(10):1097-1102
To explore the role of vascular endothelial growth factor (VEGF) in diabetic peripheral neuropathic pain in rats.
Methods: Twenty-four adult male Sprague-Dawley rats aged 8 weeks were randomly divided into 3 groups (n=8 per group). The control group (C group): rats were intraperitoneally injected with sodium citrate solution at 10 mL/kg; the model group (M group): rats were intraperitoneally injected with streptozotocin at 65 mg/kg; the treatment group (T group): rats received intraperitoneal injection of anti-VEGF antibody (10 mg/kg) at the 1st, 3rd, 7th, 10th day after STZ treatment. Meanwhile, rats of C and M group were received with the same volume of sodium citrate solution. Blood glucose was measured before 1 day or at the 1st, 3rd, 7th or 14th day after receiving STZ. Body weight, paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured before 1 day or at the 1st, 3rd, 5th, 7th, 10th or 14th day after receiving STZ. All lumbar spinal cords were dissected to examine the p-protein kinase B (p-Akt) and transient receptor potential vanilloid 1 (TRPV1) expression by Western blot.
Results: After injection with STZ, the body weight showed significant differences at some time point between the M, T or C group (P<0.01); body weight of rat in the C group were increased gradually. Compared with the C group, the fast blood glucose in the M or the T Group at the same time points were increased significantly (P<0.01). The PWMT and PWTL of the M, T or C group were significant difference among various time points (P<0.01). The PWMT and PWTL in the M or T group were obviously reduced compared with those in the C group (P<0.01). Compared with the M group, the PWMT and PWTL in the T group were increased at the 10th or 14th day (P<0.01 or P<0.05). Compared with the C group, the p-Akt and TRPV1 levels in the M and T group were increased (P<0.01). Compared with the M group, p-Akt and TRPV1 levels in T group were decreased (P<0.01).
Conclusion: VEGF is able to regulate the expression of TRPV1 through PI3K/Akt pathway, which contributes to diabetic peripheral neuropathic pain in rats. Anti-VEGF treatment may be useful for alleviation of diabetic peripheral neuropathic pain.
Animals
;
Antibodies
;
pharmacology
;
therapeutic use
;
Diabetes Mellitus, Experimental
;
chemically induced
;
Diabetic Neuropathies
;
chemically induced
;
drug therapy
;
Gene Expression Regulation
;
drug effects
;
Male
;
Phosphatidylinositol 3-Kinases
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
TRPV Cation Channels
;
genetics
;
Vascular Endothelial Growth Factor A
;
metabolism
9.Vitamin B supplementation for diabetic peripheral neuropathy.
Bhavani JAYABALAN ; Lian Leng LOW
Singapore medical journal 2016;57(2):55-59
Vitamin B12 deficiency has been associated with significant neurological pathology, especially peripheral neuropathy. This review aims to examine the existing evidence on the effectiveness of vitamin B12 supplementation for the treatment of diabetic peripheral neuropathy. A search of PubMed and the Cochrane Central Register of Controlled Trials for all relevant randomised controlled trials was conducted in December 2014. Any type of therapy using vitamin B12 or its coenzyme forms was assessed for efficacy and safety in diabetics with peripheral neuropathy. Changes in vibration perception thresholds, neuropathic symptoms and nerve conduction velocities, as well as the adverse effects of vitamin B12 therapy, were assessed. Four studies comprising 363 patients met the inclusion criteria. This review found no evidence that the use of oral vitamin B12 supplements is associated with improvement in the clinical symptoms of diabetic neuropathy. Furthermore, the majority of studies reported no improvement in the electrophysiological markers of nerve conduction.
Diabetic Neuropathies
;
complications
;
drug therapy
;
Dietary Supplements
;
Humans
;
Vitamin B 12
;
therapeutic use
;
Vitamin B 12 Deficiency
;
drug therapy
;
etiology
;
Vitamins
;
therapeutic use
10.Jinmaitong alleviates the diabetic peripheral neuropathy by inducing autophagy.
Ling QU ; Hong ZHANG ; Bei GU ; Wei DAI ; Qun-li WU ; Lian-qing SUN ; Li ZHAO ; Yue SHI ; Xiao-chun LIANG
Chinese journal of integrative medicine 2016;22(3):185-192
OBJECTIVETo observe the deregulation of autophagy in diabetic peripheral neuropathy (DPN) and investigate whether Jinmaitong ( JMT) alleviates DPN by inducing autophagy.
METHODSDPN models were established by streptozotocin-induced diabetic rats and Schwann cells (SCs) cultured in high glucose medium. The pathological morphology was observed by the improved Bielschowsky's nerve fiber axonal staining and the Luxol fast blue-neutral red myelin staining. The ultrastructure was observed by the transmission electron microscopy. Beclin1 level was detected by immunohistochemistry and Western blot. The proliferation of cultured SCs was detected by methylthiazolyldiphenyl-tetrazolium bromide.
RESULTSDiabetic peripheral nerve tissues demonstrated pathological morphology and reduced autophagic structure, accompanied with down-regulation of Beclin1. JMT apparently alleviated the pathological morphology change and increased the autophagy [in vivo, Beclin1 integral optical density (IOD) value of the control group 86.6±17.7, DM 43.9±8.8, JMT 73.3 ±17.8, P<0.01 or P<0.05, in vitro Beclin1 IOD value of the glucose group 0.47±0.25 vs the control group 0.88±0.29, P<0.05]. Consequently, inhibition of autophagy by 3-methyladenine resulted in a time- and concentration-dependent decrease of the proliferation of SCs (P<0.05, P<0.01).
CONCLUSIONSDown-regulation of autophagy in SCs might contribute to the pathogenesis of DPN. JMT alleviates diabetic peripheral nerve injury at least in part by inducing autophagy.
Animals ; Autophagy ; drug effects ; Axons ; drug effects ; pathology ; Beclin-1 ; metabolism ; Cell Proliferation ; drug effects ; Cells, Cultured ; Diabetes Mellitus, Experimental ; complications ; drug therapy ; pathology ; Diabetic Neuropathies ; complications ; drug therapy ; pathology ; Down-Regulation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Glucose ; pharmacology ; Immunohistochemistry ; Male ; Rats, Wistar ; Schwann Cells ; drug effects ; pathology ; Sciatic Nerve ; drug effects ; pathology ; ultrastructure ; Staining and Labeling

Result Analysis
Print
Save
E-mail