1.Low Hemoglobin Concentration Is Associated with Several Diabetic Profiles.
The Korean Journal of Internal Medicine 2012;27(3):273-274
No abstract available.
Diabetes Mellitus, Type 2/*blood
;
Diabetic Nephropathies/*blood
;
Diabetic Retinopathy/*blood
;
Hemoglobins/*metabolism
;
Humans
;
Male
2.Vitamin D receptor and its protective role in diabetic nephropathy.
Xiaoling GUAN ; Huajie YANG ; Wei ZHANG ; Huanjun WANG ; Lin LIAO
Chinese Medical Journal 2014;127(2):365-369
OBJECTIVETo review the advances of studies on vitamin D receptor and its role in the pathogenesis of diabetic nephropathy.
DATA SOURCESA comprehensive search of the PubMed literatures without restriction on the publication date was carried out using keywords such as vitamin D receptor and diabetic nephropathy.
STUDY SELECTIONArticles related to vitamin D receptor and diabetic nephropathy were selected and carefully analyzed.
RESULTSThe ligands as well as construction and tissue distribution of vitamin D receptor were summarized. Pathogenesis of diabetic nephropathy was analyzed. The mechanisms underlying the renoprotective role of vitamin D receptor including inhibition of renin-angiotensin system, anti-inflammation, anti-fibrosis and the reduction of proteinuria were reviewed. Mounting evidences from animal and clinical studies have suggested that vitamin D therapy has beneficial effects on the renal systems and the underlying renoprotective mechanisms of the vitamin D receptor-mediated signaling pathways is a hot research topic.
CONCLUSIONOur study suggests that vitamin D receptor has a great potential for preventing the progression of diabetic nephropathy via multiple mechanisms.
Animals ; Diabetic Nephropathies ; metabolism ; Humans ; Proteinuria ; metabolism ; Receptors, Calcitriol ; metabolism ; Renin-Angiotensin System ; physiology
3.Urinary Extracellular Vesicle: A Potential Source of Early Diagnostic and Therapeutic Biomarker in Diabetic Kidney Disease.
Wei-Cheng XU ; Ge QIAN ; Ai-Qun LIU ; Yong-Qiang LI ; He-Qun ZOU
Chinese Medical Journal 2018;131(11):1357-1364
ObjectiveDiabetic kidney disease (DKD) has become one of the major causes of end-stage renal disease. Urinary extracellular vesicles (uEVs) contain rich biological information which could be the ideal source for noninvasive biomarkers of DKD. This review discussed the potential early diagnostic and therapeutic values of proteins and microRNAs in uEVs in DKD.
Data SourcesThis review was based articles published in PubMed, Embase, Cochrane, and Google Scholar databases up to November 20, 2017, with the following keywords: "Diabetic kidney disease", "Extracellular vesicle", and "Urine".
Study SelectionRelevant articles were carefully reviewed, with no exclusions applied to the study design and publication type.
ResultsThere is no "gold standard" technology to separate and/or purify uEVs. The uEVs contain a variety of proteins and RNAs and participate in the physiological and pathological processes of the kidney. UEVs, especially urinary exosomes, may be useful biomarkers for early diagnosis and treatment to DKD. Furthermore, the uEVs has been used as a therapeutic target for DKD.
ConclusionProteins and nucleic acids in uEVs represent promising biomarker for the diagnosis and treatment of DKD.
Biomarkers ; metabolism ; Databases, Factual ; Diabetic Nephropathies ; diagnosis ; metabolism ; Extracellular Vesicles ; metabolism ; Humans
4.Exploring the therapeutic mechanism of Longqi Fang for diabetic kidney disease based on network pharmacology and verification in rats.
Lei XING ; Wen Wen XING ; Hong Min GUO
Journal of Southern Medical University 2022;42(2):171-180
OBJECTIVE:
To study the therapeutic mechanism of Longqi Fang (LQF) for diabetic kidney disease (DKD) based on GEO database and network pharmacology.
METHODS:
LQF and DKD targets were obtained using the databases including GEO, TCMSP, CNKI, ChemDraw, and SwissTarget Prediction, and LQF-DKD intersection targets were obtained with VENNY. String was used for protein-protein interaction (PPI) analysis, and R package for KEGG and GO enrichment analysis. Cytoscape 3.7.2 software Network graphs were constructed. The results of network pharmacology analysis were verified in SD rat models of DKD by daily treatment of the rats with LQF at low (1 g/kg), medium (2 g/kg), and high (2 g/kg) doses, and kidney pathology was observed with HE staining and the changes in renal function were assessed. Western blotting was used to detect the expression levels of NF-κB and p-NF-κB proteins.
RESULTS:
We identified 760 main targets of LQF, and obtained 1026 differential genes using GEO database and 61 LQF-DKD intersection targets using Venny database. The core targets obtained through PPI network analysis included Myc, EGF, CASP3, VEGFA, CCL2, SPP1, VCAM1 and ICAM1. Go analysis showed that LQF affects mainly nuclear receptor activity and ligand activated transcription factor activity. KEGG analysis showed that LQF affects inflammatory signaling pathways by interfering with NF-κB, TNF, and PI3K-AKT. In rat models of DKD, treatment with LQF resulted in significant improvements of the renal functions (P < 0.05) and glomerular and tubular structure and arrangement in a dose-dependent manner. Western blotting results showed that LQF dose-dependently downregulated NF-κB and p-NF-κB expressions in the rat models.
CONCLUSION
The therapeutic mechanism of LQF for DKD involves multiple components, targets and signal pathways that mediate an inhibitory effect on NF-κB signaling pathway to protect the renal function.
Animals
;
Diabetes Mellitus
;
Diabetic Nephropathies/metabolism*
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Interaction Maps
;
Rats
;
Rats, Sprague-Dawley
6.Correlations of podocyte injury with glucose regulated protein 78 expression and proteinuria in patients with diabetic nephropathy.
Ying-jiu LIU ; Yu-bing WEN ; Jian-ling TAO ; Jin-hong LI ; Ying SU ; Wei YE ; Hang LI ; Xue-mei LI ; Xue-wang LI
Acta Academiae Medicinae Sinicae 2012;34(4):359-363
OBJECTIVETo explore the podocyte injury in patients with diabetic nephropathy (DN) and analyze its relationship with glucose regulated protein 78 (GRP78) and proteinuria.
METHODSThe clinical data of 48 patients diagnosed as DN by renal biopsy were reviewed. All patients were divided into two groups according to proteinuria (>3.5 g/d, n=31 and 3.5 g/d, n=17). The density of podocytes was illustrated by immunohistochemistry staining of Wilms tumor-1 (WT-1), and the immunofluorescence double-staining results of synaptopodin and GRP78 in podocytes were detected.
RESULTSThe podocyte dentistry of urine protein > 3.5 g/d group was significantly lower than that of urine protein>3.5 g/d group urine protein<3.5 g/d group(P=0.003), and it was negatively correlated with proteinuria (P=0.005). The expressions of synaptopodin and GRP78 in podocytes were also negatively correlated with proteinuria (P=0.004 and P=0.001).
CONCLUSIONThe podocyte injury is aggravated with increased proteinuria in DN patients, along with the decrease of the adaptive ability of endoplasmic reticulum to stress.
Adult ; Diabetic Nephropathies ; complications ; metabolism ; pathology ; Female ; Heat-Shock Proteins ; metabolism ; Humans ; Male ; Middle Aged ; Podocytes ; pathology ; Proteinuria ; etiology
7.Changes of glomerular basement membrane components in Vacor-induced diabetic nephropathy.
Young Duk SEON ; Tai Hee LEE ; Min Cheol LEE
The Korean Journal of Internal Medicine 1999;14(1):77-84
OBJECTIVES: The thickening of the glomerular basement membrane in rats after Vacor ingestion was examined by electron microscopy. This study was performed to elucidate which biochemical components changed in the glomerular basement membrane after Vacor-induced diabetic glomerulopathy. METHODS: Immunohistochemical analyses of type IV collagen, laminin, fibronectin and chondroitin sulfate proteoglycan were performed. A single dose of Vacor (molecular weight 272), 80 mg/kg, was administered to adult male Wistar rats by orogastric canule, and the animals were sacrificed at 0.5, 1, 3, 7, 14, 28 and 56 days after administration. RESULTS: Mild thickening of the glomerular basement membrane was evident 7 days after Vacor administration, and the width of the glomerular basement membrane was more than twice that of normal controls at 28 and 56 days. Significantly increased expressions of type IV collagen, laminin, fibronectin and neutral polysaccharide in the thickened glomerular basement membrane were noted 14 to 56 days after administration, and a mildly increased expression of chondroitin sulfate proteoglycan appeared between 3 to 7 days. CONCLUSION: These abnormally increased glomerular basement membrane components might be part of what causes diabetic nephropathy after Vacor administration.
Animal
;
Basement Membrane/pathology
;
Basement Membrane/metabolism
;
Basement Membrane/drug effects
;
Diabetic Nephropathies/pathology
;
Diabetic Nephropathies/metabolism
;
Diabetic Nephropathies/chemically induced*
;
Extracellular Matrix Proteins/metabolism
;
Kidney Glomerulus/pathology
;
Kidney Glomerulus/metabolism
;
Kidney Glomerulus/drug effects
;
Male
;
Phenylurea Compounds/toxicity*
;
Proteochondroitin Sulfates/metabolism
;
Rats
;
Rats, Wistar
8.Evaluating Pharmacological Effects of Two Major Components of Shuangdan Oral Liquid: Role of Danshensu and Paeonol in Diabetic Nephropathy Rat.
Ying CHEN ; Zhuying LIU ; Fuxing ZHOU ; Hang ZHAO ; Qian YANG ; Hua LI ; Jiyuan SUN ; Siwang WANG
Biomolecules & Therapeutics 2016;24(5):536-542
Shuangdan oral liquid (SDO) containing radix Salviae miltiorrhizae (Chinese name Danshen) and cortex moutan (Chinese name Mudanpi) is a traditional Chinese medicine using for treating vascular diseases. Danshensu (DSS) is a main effective monomer composition derived from radix Salviae miltiorrhizae and paeonol (Pae) from cortex moutan. Although the two herbs are widely used in traditional Chinese medicine, the pharmacological functions of their active compositions were not reported. Therefore, the research of DSS and Pae in mechanisms and pharmacodynamics interaction can provide scientific evidence to support clinical application. The diabetic nephropathy (DN) rats which were induced by streptozotocin (STZ) were treated with SDO, DSS, Pae, and DSS+Pae for eight weeks. The positive effects on DN animal models were investigated by detection of physiological and biochemical indexes and oxidative stress markers, within five treatments: SDO, DSS, Pae, DSS+Pae and insulin group. Compared with the model group, the DSS+Pae group improved the renal function, blood lipid metabolism and blood viscosity, increased the vitality of T-SOD or T-AOC and decreased the level of MDA or NO after the treatment. The study was successfully showed that the DSS+Pae group could delay the process of DN, especially in the renal injury part of histopathology changes. Our results suggest that the co-administration of DSS and Pae significantly may play a protective role in DN rats through decreasing the oxidative stress and improving the blood lipid metabolism mechanisms.
Animals
;
Blood Viscosity
;
Diabetic Nephropathies*
;
Insulin
;
Lipid Metabolism
;
Medicine, Chinese Traditional
;
Models, Animal
;
Oxidative Stress
;
Rats*
;
Salvia
;
Streptozocin
;
Vascular Diseases
9.Association study of serum LncRNA MALAT1 and SAA with type 2 diabetic kidney disease.
Hua Jun GAO ; Ying Chun QIAO ; Ying Ying ZHANG ; Ya Ru WANG ; Wen Yan NIU
Chinese Journal of Preventive Medicine 2022;56(12):1838-1843
To investigate the correlation of serum long noncoding RNA-metastasis associated lung adenocarcinoma transcript 1(LncRNA MALAT1) and serum amyloid A(SAA) with diabetic kidney disease. Retrospective research was used, and 40 patients with type 2 diabetes and 80 patients with type 2 diabetic kidney disease patients who were treated in Tianjin Medical University Chu Hsien-I Memorial Hospital from August 2021 to February 2022 were selected, and 40 healthy subjects were selected during the same period. Reverse transcription-polymerase chain reaction(RT-PCR) was used to detect serum LncRNA MALAT1. SAA were detected with enzyme linked immunosorbent assay (ELISA). Automatic biochemistry analyzer was used to detect serum creatinine (CREA) and low-density lipoprotein cholesterol(LDL-C),automatic blood glucose analyzer to detect serum fasting plasma glucose (FPG), automatic glycated hemoglobin analyzer to detect hemoglobin A1C (HbA1c), and automatic immunoassay analyzer to detect urinary albumin to creatinine ratio(UACR). Differences between groups were compared by t test and analysis of variance. Pearson analysis was used to analyze the correlation between MALAT1, SAA and other indicators. Receiver operating characteristic curve(ROC) was used to evaluate the auxiliary diagnostic value of MALAT1 and SAA for diabetic kidney disease. The results showed that MALAT1 and SAA in the diabetic kidney disease with mass albuminuria group were higher than those in the type 2 diabetes mellitus group (q=8.57, P<0.01; q=11.09, P<0.01) and the diabetic kidney disease with microalbuminuria group (q=3.96, P<0.05; q=7.85, P<0.01). MALAT1 had a high correlation with UACR, CREA, SAA, HbA1c and FPG (r value was 0.706, 0.643, 0.578, 0.553, and 0.524, all P<0.01), and SAA had a high correlation with UACR, HbA1c and FPG (r value was 0.664, 0.617, and 0.595, all P<0.01). ROC curve analysis of the diagnostic value of LncRNA MALAT1 and protein SAA for diabetic kidney disease showed that the areas under curve (AUC) were 0.741 and 0.744, respectively. The combined diagnostic value of the two was the greatest (AUC=0.801). In summary, MALAT1 and SAA were elevated in the serum of patients with type 2 diabetes. Their concentrations in the serum of group with diabetic kidney disease were higher than that in the type 2 diabetes group, and the serum concentrations of MALAT1 and SAA in group with mass albuminuria are higher than the group with microalbuminuria. MALAT1 and SAA were both closely related to UACR and HbA1c, and there is a correlation between them. Both of them may have ancillary diagnostic value for diabetic kidney disease.
Humans
;
RNA, Long Noncoding/metabolism*
;
Diabetes Mellitus, Type 2
;
Diabetic Nephropathies/urine*
;
Retrospective Studies
;
Glycated Hemoglobin
;
Serum Amyloid A Protein
;
Albuminuria
10.Effects and mechanisms of total flavones of Abelmoschus manihot in attenuating diabetic tubulopathy by targeting endoplasmic reticulum stress-induced cell apoptosis.
Bing-Ying WAN ; Dong-Wei CAO ; Yi-Gang WAN ; Dai CHEN ; Wei WU ; Qi-Jun FANG ; Si-Yi LIU ; Yue TU ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2023;48(10):2657-2666
Renal tubular injury in patients with diabetic kidney disease(DKD) may be accompanied by glomerular and microvascular diseases. It plays a critical role in the progression of renal damage in DKD, and is now known as diabetic tubulopathy(DT). To explore the multi-targeted therapeutic effects and pharmacological mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese medicine for treating kidney disease, in attenuating DT, the authors randomly divided all rats into four groups: a normal control group(normal group), a DT model group(model group), a DT model+TFA-treated group(TFA group) and a DT model+rosiglitazone(ROS)-treated group(ROS group). The DT rat model was established based on the DKD rat model by means of integrated measures. After successful modeling, the rats in the four groups were continuously given double-distilled water, TFA suspension, and ROS suspension, respectively by gavage every day. After 6 weeks of treatment, all rats were sacrificed, and the samples of their urine, blood, and kidneys were collected. The effects of TFA and ROS on various indicators related to urine and blood biochemistry, renal tubular injury, renal tubular epithelial cell apoptosis and endoplasmic reticulum stress(ERS), as well as the activation of the protein kinase R-like endoplasmic reticulum kinase(PERK)-eukaryotic translation initiation factor 2α(eIF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP) signaling pathway in the kidney of the DT model rats were investigated. The results indicated that hypertrophy of renal tubular epithelial cells, renal tubular hyperplasia and occlusion, as well as interstitial extracellular matrix and collagen deposition occurred in the DT model rats. Moreover, significant changes were found in the expression degree and the protein expression level of renal tubular injury markers. In addition, there was an abnormal increase in tubular urine proteins. After TFA or ROS treatment, urine protein, the characteristics of renal tubular injury, renal tubular epithelial cell apoptosis and ERS, as well as the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney of the DT model rats were improved to varying degrees. Therein, TFA was superior to ROS in affecting the pathological changes in renal tubule/interstitium. In short, with the DT model rats, this study demonstrated that TFA could attenuate DT by multiple targets through inhibiting renal tubular ERS-induced cell apoptosis in vivo, and its effect and mechanism were related to suppressing the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney. These findings provided preliminary pharmacological evidence for the application of TFA in the clinical treatment of DT.
Rats
;
Animals
;
Abelmoschus
;
Reactive Oxygen Species/metabolism*
;
Flavones/pharmacology*
;
Endoplasmic Reticulum Stress
;
Diabetic Nephropathies/drug therapy*
;
Apoptosis
;
Diabetes Mellitus