1.Research progress of the drug screening technology in type 2 diabetes mellitus.
Aoxue LUO ; Yijun FAN ; Aoshuang LUO ; Guanbin SONG
Journal of Biomedical Engineering 2006;23(4):895-898
With the incidence of type 2 diabetes mellitus increasing year after year, the technology of drug screening of type 2 diabetes mellitus progress rapidly, from the level of animal screening to cellular and molecular screening model, from the traditional drug screening technology to high efficient and throughput screening. This paper will summarize the technology of drug screening in the therapy of type 2 diabetes mellitus.
Animals
;
Diabetes Mellitus, Type 2
;
drug therapy
;
genetics
;
Drug Evaluation, Preclinical
;
methods
;
Humans
;
In Vitro Techniques
2.Study on effect of gypenosides on insulin sensitivity of rats with diabetes mellitus via regulating NF-κB signaling pathway.
Kui-Niu ZHU ; Sha-Sha TIAN ; Hui WANG ; Yu-Shan TIAN ; Gui-Zhang GU ; Yao-Yao QIU ; Lu ZHANG ; Hong-Xia YANG
China Journal of Chinese Materia Medica 2021;46(17):4488-4496
This study focused on the ameliorative effects of gypenosides(GPS) on insulin sensitivity and inflammatory factors in rats with type 2 diabetes mellitus(T2 DM) and explored their possible molecular mechanisms. After the successful establishment of T2 DM model, diabetic rats were randomly divided into four groups, including model group, GPS groups(200, 100 mg·kg~(-1)) and metformin group(100 mg·kg~(-1)), with healthy rats serving as the control. After 6-week intragastric administration, fasting blood glucose(FBG) and oral glucose tolerance were examined. The levels of insulin, C-peptide, tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) and C-reactive protein(CRP) in serum were examined. Then the homeostasis model assessment of insulin resistance(HOMA-IR) and insulin sensitivity index(ISI) were calculated. The protein expression levels of phosphorylated insulin receptor substrate-1(p-IRS-1) and phosphorylated protein kinase B(p-Akt) in skeletal muscle were measured by Western blot, as well as those of phosphorylated inhibitor of nuclear factor-κB(NF-κB) kinase β(p-IKKβ), phosphorylated alpha inhibitor of NF-κB(p-IκBα) and phosphorylated p65 subunit of NF-κB(p-p65) in adipose tissue. The relative expression levels of glucose transporter 4(GLUT4) mRNA in skeletal muscle and NF-κB mRNA in adipose tissue were measured by qRT-PCR, and the morphological changes of pancreatic tissue were observed. Compared with the model group, the GPS groups witnessed significant decrease in FBG, marked amelioration of impaired oral glucose tolerance and significant increase in ISI. Further, the high-dose GPS group saw significantly reduced HOMA-IR, TNF-α, IL-1β and CRP, significantly increased expression levels of p-IRS-1(Tyr), p-Akt and GLUT4, and markedly inhibited p-IRS-1(Ser), p-IKKβ, p-IκBα, p-p65 and NF-κB. The concentration of CRP and the expression levels of p-IRS-1(Ser), p-IKKβ, p-IκBα and NF-κB were remarkably reduced in the low-dose GPS group. However, GPS was found less effective in the regulation of serum insulin, C-peptide and IL-6 levels and the alleviation of pancreatic islet injury. The results indicated that GPS can reduce FBG and improve insulin sensitivity in diabetic rats possibly by regulating the NF-κB signaling pathway, inhibiting inflammation, and thereby regulating the expression of key proteins in the insulin signaling pathway.
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Diabetes Mellitus, Type 2/genetics*
;
Gynostemma
;
Insulin
;
Insulin Resistance
;
NF-kappa B/metabolism*
;
Plant Extracts
;
Rats
;
Signal Transduction
3.Effects of timely insulin treatment on protection of beta cells in a rat model of type 2 diabetes mellitus.
Ying-sheng ZHOU ; Yan GAO ; Xiao-hui GUO ; Bin LI ; Shu WANG ; Jia-min CHI
Chinese Medical Journal 2004;117(10):1523-1529
BACKGROUNDInsulin treatment plays a key role in management of diabetes mellitus. Clinical researches showed that extra improvements in restoration of insulin secretion of pancreatic beta cells were found in patients with newly diagnosed type 2 diabetes. The purpose of this study was to investigate the effects of early insulin treatment on insulin mRNA expression and morphological alterations of beta cells in a Sprague Dawley (SD) rat model of type 2 diabetes.
METHODSA rat model of type 2 diabetes mellitus (T2DM) was induced by a high fat diet (high energy, HE) and low doses of streptozotoxin (STZ, 40 mg/kg). A group of diabetic rats was then injected with protamine zinc insulin [PZI, 1 - 2 U x kg(-1) x d(-1)] for one week. Insulin mRNA expression, morphological features of pancreatic islets, and metabolic parameters were examined in rats using reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and other techniques.
RESULTSIn insulin-treated diabetic rats, insulin mRNA levels prominently increased by 81.3% (P < 0.05), as compared with untreated diabetic rats. Moreover, timely insulin treatment noticeably improved the insulin content of beta cells, with an increase of 10.2% (P < 0.05), despite a slight reduction in fasting blood glucose (FBG), triglyceride (TG), and free fatty acid (FFA) levels, as compared to an untreated diabetic group.
CONCLUSIONInsulin treatment at the onset of T2DM effectively improves insulin synthesis, as confirmed by morphological changes to beta cells in a rat model of type 2 diabetes.
Adipose Tissue ; metabolism ; Animals ; Body Weight ; drug effects ; Diabetes Mellitus, Experimental ; drug therapy ; metabolism ; Diabetes Mellitus, Type 2 ; drug therapy ; metabolism ; Insulin ; administration & dosage ; analysis ; genetics ; Islets of Langerhans ; drug effects ; Male ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Streptozocin
4.Biotransformation differences of ginsenoside compound K mediated by the gut microbiota from diabetic patients and healthy subjects.
Sutianzi HUANG ; Li SHAO ; Manyun CHEN ; Lin WANG ; Jing LIU ; Wei ZHANG ; Weihua HUANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(10):723-729
Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, Liquid/methods*
;
Healthy Volunteers
;
RNA, Ribosomal, 16S
;
Feces/microbiology*
;
Tandem Mass Spectrometry
;
Biotransformation
;
Diabetes Mellitus, Type 2/drug therapy*
5.Hypoglycemic effect of electroacupuncture at "Tianshu" (ST 25) combined with metformin on rats with type 2 diabetes mellitus based on AMPK.
Xue-Ting SHEN ; Shuang-Shuang ZHANG ; Xiao-Yan CHEN ; Zhi YU ; Bin XU
Chinese Acupuncture & Moxibustion 2023;43(1):53-59
OBJECTIVE:
To observe the hypoglycemic effect of electroacupuncture (EA) at "Tianshu" (ST 25) combined with metformin on rats with type 2 diabetes mellitus (T2DM) as well as its effect on expression of adenosine monophosphate activated protein kinase (AMPK) in liver and pancreas.
METHODS:
Thirty-six male SD rats were randomly divided into a blank group (6 rats) and a model establishing group (30 rats). The rats in the model establishing group were fed with high-fat diet and treated with intraperitoneal injection of low-dose streptozotocin (STZ) to establish T2DM model. The rats with successful model establishment were randomly divided into a model group, a control group, a metformin group, an EA group and a combination group, 6 rats in each group. The rats in the EA group were treated with EA at "Tianshu" (ST 25), dense-disperse wave, 2 Hz/15 Hz in frequency and 2 mA in current intensity, 20 min each time. The rats in the metformin group were treated with intragastric administration of metformin (190 mg/kg) dissolved in 0.9% sodium chloride solution (2 mL/kg). The rats in the combination group were treated with EA at "Tianshu" (ST 25) and intragastric administration of metformin. The rats in the control group were treated with intragastric administration of 0.9% sodium chloride solution with the same dose. All the treatments were given once a day for 5 weeks. After the intervention, the body mass and random blood glucose were detected; the serum insulin level was detected by ELISA; the expression of AMPK and phosphorylated adenosine monophosphate activated protein kinase (p-AMPK) in liver and pancreas was detected by Western blot method; the expression of protein gene product 9.5 (PGP9.5) was detected by immunofluorescence.
RESULTS:
①Compared with the blank group, the body mass in the model group was decreased (P<0.05); compared with the model group, the body mass in the EA group and the combination group was decreased (P<0.05); the body mass in the EA group and the combination group was lower than the metformin group (P<0.05). Compared with the blank group, the random blood glucose in the model group was increased (P<0.01); compared with the model group, the random blood glucose in the metformin group, the EA group and the combination group was decreased (P<0.01). The random blood glucose in the combination group was lower than the metformin group and the EA group (P<0.05). ②Compared with the blank group, the insulin level in the model group was decreased (P<0.05); compared with the model group, the insulin level in the metformin group, the EA group and the combination group was all increased (P<0.05). The insulin level in the combination group was higher than the metformin group and the EA group (P<0.05). ③Compared with the blank group, the protein expression of AMPK and p-AMPK in liver tissue was decreased (P<0.05), and the protein expression of AMPK and p-AMPK in pancreatic tissue was increased (P<0.05) in the model group. Compared with the model group, the protein expression of AMPK and p-AMPK in liver tissue in the metformin group, the EA group and the combination group was increased (P<0.05, P<0.01); the protein expression of AMPK in pancreatic tissue in the metformin group was increased (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was decreased (P<0.05); the protein expression of p-AMPK in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05). The protein expression of AMPK and p-AMPK in liver tissue in the combination group was higher than that in the metformin group and the EA group (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was less than that in the metformin group (P<0.05), and the expression of p-AMPK protein in pancreatic tissue in the combination group was less than that in the metformin group and the EA group (P<0.05). ④Compared with the blank group, the expression of PGP9.5 in pancreatic tissue in the model group was increased (P<0.01); compared with the model group, the expression of PGP9.5 in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05, P<0.01). The expression of PGP9.5 in pancreatic tissue in the EA group was lower than the metformin group and the combination group (P<0.05).
CONCLUSION
Electroacupuncture at "Tianshu" (ST 25) could promote the effect of metformin on activating AMPK in liver tissue of T2DM rats, improve the negative effect of metformin on AMPK in pancreatic tissue, and enhance the hypoglycemic effect of metformin. The mechanism may be related to the inhibition of pancreatic intrinsic nervous system.
Animals
;
Male
;
Rats
;
Acupuncture Points
;
AMP-Activated Protein Kinases/genetics*
;
Blood Glucose
;
Diabetes Mellitus, Type 2/drug therapy*
;
Electroacupuncture
;
Hypoglycemic Agents
;
Insulins
;
Metformin
;
Rats, Sprague-Dawley
6.Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes.
Michelle E KIMPLE ; Joshua C NEUMAN ; Amelia K LINNEMANN ; Patrick J CASEY
Experimental & Molecular Medicine 2014;46(6):e102-
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Animals
;
Diabetes Mellitus, Type 2/drug therapy/*metabolism
;
GTP-Binding Protein alpha Subunits/genetics/*metabolism
;
Humans
;
Insulin-Secreting Cells/metabolism
;
Obesity/drug therapy/*metabolism
;
Receptor, Melatonin, MT2/genetics/*metabolism
;
Receptors, Adrenergic, alpha-1/genetics/*metabolism
;
Receptors, Prostaglandin/genetics/*metabolism
7.Strongyloidiasis in a Diabetic Patient Accompanied by Gastrointestinal Stromal Tumor: Cause of Eosinophilia Unresponsive to Steroid Therapy.
Eun Jeong WON ; Jin JEON ; Young Il KOH ; Dong Wook RYANG
The Korean Journal of Parasitology 2015;53(2):223-226
We report here a case of strongyloidiasis in a 72-year-old diabetic patient (woman) accompanied by gastrointestinal stromal tumor receiving imatinib therapy, first diagnosed as hypereosinophilic syndrome and treated with steroids for uncontrolled eosinophilia. She suffered from lower back pain and intermittent abdominal discomfort with nausea and diagnosed with gastrointestinal stromal tumor. After post-operative imatinib treatment eosinophilia persisted, so that steroid therapy was started under an impression of hypereosinophilic syndrome. In spite of 6 months steroid therapy, eosinophilia persisted. Stool examination was performed to rule out intestinal helminth infections. Rhabditoid larvae of Strongyloides stercoralis were detected and the patient was diagnosed as strongyloidiasis. This diagnosis was confirmed again by PCR. The patient was treated with albendazole for 14 days and her abdominal pain and diarrhea improved. This case highlights the need for thorough investigation, including molecular approaches, to test for strongyloidiasis before and during steroid therapies.
Aged
;
Albendazole/administration & dosage
;
Animals
;
Diabetes Mellitus, Type 2/complications
;
Eosinophilia/complications/*drug therapy
;
Female
;
Gastrointestinal Stromal Tumors/complications/*drug therapy
;
Humans
;
Imatinib Mesylate/*administration & dosage
;
Steroids/*administration & dosage
;
Strongyloides stercoralis/genetics/isolation & purification/physiology
;
Strongyloidiasis/*drug therapy/parasitology
8.Effects of shenqi compound on the mRNA expression of AT1R in the aorta of GK rats.
Can ZHUANG ; Chun-guang XIE ; Min CHEN ; Ya LIU ; Hong GAO
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(3):351-355
OBJECTIVETo observe the effects of Shenqi Compound (SQC) on the mRNA expression of angiotensin II type 1 receptor (AT1R) in the aorta of Goto-Kakizaki (GK) rats.
METHODSTotally 67 GK rats were randomly divided into 5 groups, i.e., the GK group (n =18), the model group (n =16), the atorvastatin group (n =17), and the SQC group (n =16). Another a normal control group was set up (n =18). The diabetic macrovascular disease model was prepared by adding L-NAME (at the daily dose of 0.10 mg/mL) in drinking water for GK rats. GK rats, except those in the normal control group were fed with high fat diet. Atorvastatin (at the daily dose of 1.60 mg/kg) and SQC (at the daily dose of 1.44 g/kg) were respectively administered by gastrogavage, once daily for 35 successive days. The blood glucose was determined by glucose oxidase method once per week. After 5-week medication, the contents of triglyceride (TG) and total cholesterol (TC) were determined by ELISA. The serum concentrations of angiotensin I (Ang II) were determined by RIA. The mRNA expression of AT1R in the aorta was determined by real-time quantitative reverse transcriptase PCR (RT-PCR).
RESULTSThe blood glucose level was obviously lower in both the atorvastatin group and the SQC group after 4 weeks of medication (P <0.05). Besides, it was significantly lower in the SQC group than in the model group by the end of the 4th week (P <0.05). The concentrations of TG, TC and serum Ang II , and the mRNA expression of AT1R in the aorta were significantly higher in the model group than in the normal control group (P <0.01). After 5-week medication, the concentrations of TG, TC and serum Ang I , and the mRNA expression of AT1 R in the aorta were significantly lower in the atorvastatin group and the SQC group than in the model group (P <0.01, P <0.05). The mRNA expression of AT1R was significantly higher in the SQC group than in the atorvastatin group (P <0.05).
CONCLUSIONSSQC could significantly reduce the levels of blood glucose, TG, TC, down-regulate the mRNA expression of AT1R in the aorta, and decrease the expressions of serum Ang II of GK rats with diabetic macrovascular disease. AT1 R might be one of effective targets of SQC in treating diabetic macrovascular diseases.
Angiotensin II ; blood ; Animals ; Aorta ; drug effects ; metabolism ; Blood Glucose ; analysis ; Cholesterol ; blood ; Diabetes Mellitus, Experimental ; drug therapy ; metabolism ; Diabetes Mellitus, Type 2 ; drug therapy ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Male ; RNA, Messenger ; genetics ; Rats ; Receptor, Angiotensin, Type 1 ; genetics ; metabolism ; Triglycerides ; blood
9.Beneficial Effects of Thiazolidinediones on Diabetic Nephropathy in OLETF Rats.
Mi Young LEE ; Eun Young LEE ; Byung Jun LEE ; Chan Sik WON ; Jang Hyun KOH ; Jang Yel SHIN ; Young Goo SHIN ; Byung Pil CHO ; Choon Hee CHUNG
Yonsei Medical Journal 2007;48(2):301-307
PURPOSE: Diabetic nephropathy is the most serious of complications in diabetes mellitus. Thiazolidinedione (TZD) is thought to ameliorate diabetic nephropathy; however, the mechanism underlying this effect has not been elucidated. We hypothesized that the vascular endothelial growth factor (VEGF) participates in the pathogenesis of diabetic nephropathy and that TZD may be beneficial for the treatment of diabetic nephropathy because of the effect it has on VEGF. MATERIALS AND METHODS: 23 Otsuka- Long-Evans-Tokushima-Fatty (OLETF) rats and eight control Long-Evans-Tokushima-Otsuka (LETO) rats were divided into the following four groups: LETO group, control OLETF group, pioglitazone treated group (10mg/kg/day), and rosiglitazone treated group (3mg/kg/day). RESULTS: A progressive increase in urinary protein excretion was observed in the diabetic rats. Glomerular VEGF expression in the control OLETF rats was significantly higher than in the control LETO rats. However, there was a significant reduction in both the glomerular VEGF expression and the VEGF mRNA levels after treatment with pioglitazone and rosiglitazone. The twenty-four hour urine protein levels were significantly decreased in both groups of the treated OLETF rats. CONCLUSION: These results suggest that TZD may have beneficial effects on diabetic nephropathy by reducing the VEGF expression.
Vascular Endothelial Growth Factor A/genetics
;
Thiazolidinediones/*therapeutic use
;
Rats, Long-Evans
;
Rats
;
Male
;
Hypoglycemic Agents/therapeutic use
;
Disease Models, Animal
;
Diabetic Nephropathies/*drug therapy
;
Diabetes Mellitus, Type 2/*drug therapy
;
Animals
10.First Report of Nocardia farcinica Bursitis in a Patient with Diabetes Mellitus.
Soon Deok PARK ; Han Jun KIM ; In Ho JANG ; Young UH ; Juwon KIM ; Kap Joon YOON ; Jin Rok OH
Annals of Laboratory Medicine 2014;34(3):252-255
No abstract available.
Aged
;
Anti-Bacterial Agents/therapeutic use
;
Bursitis/*diagnosis/drug therapy/microbiology
;
Cefoperazone/therapeutic use
;
Diabetes Mellitus, Type 2/complications/*diagnosis
;
Humans
;
Male
;
Nocardia/genetics/*isolation & purification
;
Polymerase Chain Reaction
;
RNA, Ribosomal, 16S/chemistry/genetics
;
Sequence Analysis, RNA
;
Sulbactam/therapeutic use