1.Study on pancreas of type 1 diabetic mice induced by MLD-STZ using proteomics.
Miao GENG ; Hong-yan CHEN ; Jian-hua WANG ; Ya-zhuo HU ; Gang ZHANG
Chinese Journal of Applied Physiology 2011;27(3):357-361
OBJECTIVETo get a better understanding of the mechanisms underlying type 1 diabetes mellitus, the differentially expressed pancreatic proteins from multiple low-dose streptozotocin (MLD-SIZ) mouse and normal mouse were analyzed and compared.
METHODS20 male rats were separated into 2 groups (n=10): model mice treated with MLD-STZ and normal mice,differences of pancreatic proteome among in the two groups of mice, were analyzed by two dimensional polyacryamide gel electrophoresis (2DE). Protein quantification was analyzed and the differentially expressed spots were identified using mass spectrometry and MASCOT database searching.
RESULTSCompared with control group, 23 proteins had changed significantly in the model group, 8 proteins expression were up-regulated, 15 proteins expressions down-regulated significantly. Using MALDI-TOF-MS, 15 proteins with significant change were identified by peptide fingerprinting map and the results were searched in MASCOT database. The function analyzed showed that proteins with change were associated with metabolic, anti-oxidant, structural, catalytic enzymes and chaperone, et al.
CONCLUSIONType 1 diabetes is probably exerted via multi-target and multi-path mechanism. The proteins with significant change are newly target for type 1 diabetes early diagnosis and treatment.
Animals ; Diabetes Mellitus, Experimental ; physiopathology ; Diabetes Mellitus, Type 1 ; chemically induced ; metabolism ; physiopathology ; Male ; Mice ; Pancreas ; metabolism ; Proteins ; metabolism ; Proteomics ; methods ; Streptozocin
2.Sequential alterations of glucocorticoid receptors in the hippocampus of STZ-treated type 1 diabetic rats.
Jae Hoon SHIN ; Je Kyung SEONG ; Sun Shin YI
Journal of Veterinary Science 2014;15(1):19-26
Type 1 diabetes is a common metabolic disorder accompanied by increased blood glucose levels along with glucocorticoid and cognitive deficits. The disease is also thought to be associated with environmental changes in brain and constantly induces oxidative stress in patients. Therefore, glucocorticoid-mediated negative feedback mechanisms involving the glucocorticoid receptor (GR) binding site are very important to understand the development of this disease. Many researchers have used streptozotocin (STZ)-treated diabetic animals to study changes in GR expression in the brain. However, few scientists have evaluated the hyperglycemic period following STZ exposure. In the present study, we found GR expression in the hippocampus varied based on the period after STZ administration for up to 4 weeks. We performed immunohistochemistry and Western blotting to validate the sequential alterations of GR expression in the hippocampus of STZ-treated type 1 diabetic rats. GR protein expression increased significantly until week 3 but decreased at week 4 following STZ administration. GR expression after 70 mg/kg STZ administration was highest at 3 weeks post-treatment and decreased thereafter. Although STZ-induced increase in GR expression in diabetic animals has been described, our data indicate that researchers should consider the sequential GR expression changes during the hyperglycemic period following STZ exposure.
Animals
;
Diabetes Mellitus, Experimental/chemically induced/*metabolism/*physiopathology
;
Disease Models, Animal
;
*Gene Expression Regulation
;
Hippocampus/metabolism/*physiopathology
;
Humans
;
Male
;
Rats
;
Rats, Wistar
;
Receptors, Glucocorticoid/*genetics/*metabolism
;
Time Factors
3.Effect of elastic fiber alterations in the tunica albuginea of the penis on erectile function of diabetic rats.
An-yang WEI ; Yi CHENG ; Yu-gang LI
Journal of Southern Medical University 2007;27(3):276-278
OBJECTIVETo investigate the effect of elastic fiber alterations in the tunica albuginea of the penis on erectile function of diabetic rats.
METHODSStreptozotocin (STZ) injection was adopted to produce rat models of diabetes mellitus and erectile dysfunction. Forty rats were randomized equally into two groups according to the time after streptozotocin (STZ) injection, namely 4 week group and 7 week group. Each group was further divided into 4 subgroups, including a control group (n=5, without STZ injection), diabetic with erectile dysfunction group (DM and ED group), diabetic without erectile dysfunction group (DM group) and group with neither diabetes mellitus or erectile dysfunction after STZ injection (None group). Victoria blue/Ponceau red staining and color image analysis were used to observe the content of the elastic fibers in the tunica albuginea, which was quantified by means of integrated optical density (IOD) readings.
RESULTSignificant difference in the IOD was observed between different groups (F=10.433, P<0.001). The content of elastic fibers in the tunica albuginea was the lowest in DM and ED group among the 4 groups (P<0.05), and there was no significant difference between 7-week and 4 week groups (F=0.685, P=0.415), nor was any interaction observed (F=0.905, P=0.452).
CONCLUSIONSDecreased elastic fibers in the tunica albuginea can result from diabetes mellitus. Elastic fibers in the tunica albuginea play an important role in the course of erection, and erectile dysfunction may result from decreased elastic fiber content.
Animals ; Diabetes Mellitus, Experimental ; chemically induced ; complications ; physiopathology ; Elastic Tissue ; metabolism ; Erectile Dysfunction ; complications ; metabolism ; physiopathology ; Male ; Penis ; metabolism ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Streptozocin ; Time Factors
4.Study on the protective effect of ursolic acid on alloxan-induced diabetic renal injury and its underlying mechanisms.
Min-You QI ; Jun-Jie YANG ; Bin ZHOU ; Ding-Yi PAN ; Xian SUN
Chinese Journal of Applied Physiology 2014;30(5):445-448
OBJECTIVETo investigate the effect of ursolic acid (UA) on the alloxan-induced kidney injury in diabetic mice and explored its possible mechanisms.
METHODSDiabetes mellitus was induced in male Kunming mice by an injection of alloxan (70 mg/kg, i.v.). After 72 hours, blood glucose levels were detected and mice with blood glucose levels over 13.9 mmol/L were considered as diabetic and selected for further experiment. Thirty mice were randomly divided into three groups: control, diabetic and diabetic + UA(35 mg/kg/d, i.g. continuously for 8 weeks). Blood glucose concentration, organ coefficient of kidney, blood urea nitrogen (BUN), creatinine (Cr) as well as renal tissue levels of superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined. Pathology of the renal tissue was measured by hematoxylin-eosin staining.
RESULTSCompared to the control group, blood glucose, organ coefficient of kidney, BUN and Cr increased significantly. In addition, SOD activities was reduced markedly and levels of MDA and inflammatory factors (TNF-α, IL-6) increased significantly. Renal cells from model group rats showed atrophy and disordered after HE staining and infiltration of inflammatory cells also appeared in renal tissue of the model group. These changes were significantly attenuated in the diabetic group treated with UA.
CONCLUSIONUA can significantly relieve renal damage in mice with diabetic nephropathy induced by alloxan, which might be related to decreased blood glucose level, antioxidation effect and inhibiting the production of inflammatory factors such as TNF-α and IL-6.
Alloxan ; adverse effects ; Animals ; Antioxidants ; metabolism ; Blood Glucose ; Blood Urea Nitrogen ; Creatinine ; metabolism ; Diabetes Mellitus, Experimental ; physiopathology ; Diabetic Nephropathies ; chemically induced ; drug therapy ; Interleukin-6 ; metabolism ; Kidney ; physiopathology ; Male ; Mice ; Superoxide Dismutase ; metabolism ; Triterpenes ; pharmacology ; Tumor Necrosis Factor-alpha ; metabolism
5.Establishment of An Alloxan-induced Diabetes Model in Daphnia Pulex.
An-Min HU ; Tao ZHU ; Ye JIANG ; Li DONG ; Hong GAO ; Gui-Zhi DU
Acta Academiae Medicinae Sinicae 2016;38(6):660-665
Objective To establish a Daphnia model of alloxan-induced diabetes. Methods Daphnia were exposed to three different concentrations of alloxan (3, 5, and 10 mmol/L) for 30 minutes. Blood glucose and survival rate were recorded for 72 hours after alloxan insult. Sequence analysis and phylogenetic inference for glucose transporters (GLUT) were clustered with the maximum-likelihood method. Using reverse transcription and quantitative polymerase chain reaction techniques, we investigated the transcriptional changes of GLUT at 12 hours after alloxan (5 mmol/L) exposure. Results Compared with control, 3 mmol/L, and 5 mmol/L as well as 10 mmol/L alloxan initially induced transient blood glucose decline by 15% for 2 hours and 12 hours respectively. In Daphnia with 5 and 10 mmol/L alloxan, their blood glucose was persistently raised by about 150% since after 24-hour insult. Survival rate of Daphnia exposure to alloxan with concentrations of 3, 5, and 10 mmol/L were 90%, 75%, and 25% respectively. We predicted seven GLUT genes in the Daphnia genome and successfully amplified them using real-time polymerase chain reaction. Two of seven GLUT transcripts were down-regulated in Daphnia with 5 mmol/L alloxan-induced diabetes. Conclusion Alloxan-induced diabetes model was successfully established in the Daphnia pulex, suggesting diabetes-relevant experiments can be conducted using Daphnia.
Alloxan
;
Animals
;
Blood Glucose
;
analysis
;
Daphnia
;
Diabetes Mellitus, Experimental
;
chemically induced
;
physiopathology
;
Disease Models, Animal
;
Gene Expression Regulation
;
Glucose Transport Proteins, Facilitative
;
genetics
;
metabolism
;
Likelihood Functions
;
Phylogeny
;
Real-Time Polymerase Chain Reaction
6.Effect of sequoyitol on expression of NOX4 and eNOS in aortas of type 2 diabetic rats.
Xian-Wei LI ; Wei HAO ; Yan LIU ; Jie-Ren YANG
Acta Pharmaceutica Sinica 2014;49(3):329-336
The aim of the present study is to investigate the effects of sequoyitol (Seq) on expression of eNOS and NOX4 in aortas of type 2 diabetic rats. Type 2 diabetic rats induced by high fat and high sugar diet and low dose of streptozotocin (STZ, 35 mg x kg(-1)) and were administered Seq (12.5, 25 and 50 mg x kg(-1) x d(-1)) for 6 weeks. The fasting blood glucose (FBG) and body weight were tested. Acetylcholine (Ach) induced endothelium-dependent relaxation and sodium nitroprusside (SNP) induced endothelium-independent relaxation were measured in aortas for estimating endothelial function. Aortic morphological change was observed with HE staining. The level of serum insulin was measured by radioimmunoassay. The total antioxidative capacity (T-AOC), malondialdehyde (MDA) and NO levels in aortas were determined according to the manufacturer's instructions. In addition, the expressions of eNOS and NOX4 in aortas were measured by immunohistochemisty, real-time PCR or Western blotting. The results showed that Seq significantly decreased FBG and insulin resistance, and improved aortic endothelium-dependent vasorelaxation function. The expressions of NOX4 and MDA content were obviously decreased, while the expression of eNOS, the levels of NO and T-AOC increased significantly in aortas of diabetic rats with Seq treatment. In conclusion, Seq protects against aortic endothelial dysfunction of type 2 diabetic rats through down-regulating expression of NOX4 and up-regulating eNOS expression.
Animals
;
Aorta
;
metabolism
;
pathology
;
Blood Glucose
;
metabolism
;
Body Weight
;
Diabetes Mellitus, Experimental
;
chemically induced
;
metabolism
;
physiopathology
;
Diabetes Mellitus, Type 2
;
chemically induced
;
metabolism
;
physiopathology
;
Hypoglycemic Agents
;
pharmacology
;
Inositol
;
analogs & derivatives
;
pharmacology
;
Insulin
;
blood
;
Insulin Resistance
;
Male
;
Malondialdehyde
;
metabolism
;
NADPH Oxidase 4
;
NADPH Oxidases
;
metabolism
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Oxidation-Reduction
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin
;
Vasodilation
;
drug effects
7.Effects of centella asiatica granule on the expression of TGF-β and related down-stream signals in rats with early diabetic nephropathy.
Ji-Wei MA ; Hong-Tian WANG ; Hao-Fei LIU ; Yuan DING ; Ji-Qiong BAI ; Zhu ZHANG
Chinese Journal of Applied Physiology 2018;34(1):69-73
OBJECTIVE:
To investigate the effects of centella asiatica (CA) granule on the expression of transform growth factor-β(TGF-β) and related down-stream signals in rats with early diabetic nephropathy(DN) and to clarify the molecular mechanisms of CA molecular mechanism of on preventing and curing early diabetic kidney disease DN by studying the effects of centella asiatica on TGF-β expression and related down-stream signals.
METHODS:
Sixty male SD rats were divided into control group(=10) and DN model group(=50). The model rats were made a right nephrectomy. One week later, diabetic nephropathy was induced by intraperitoneal injection of streptocozin(30 mg/kg) for three consecutive days. High blood glucose level of Tail vein (fasting glucose ≥ 16.7 mmol/L) and high urinary protein level(total protein level in DN group was more than twice higher than the control group) were measured to confirm early DN in rats. In the sham operation group, the right renal capsule was damaged and the corresponding amount of saline was injected. The model rats were administrated by the means of intragastric administration. The DN model group were divided into DN group, DN+fosinopril group(1.6 mg/kg·d), DN+high CA group(16.8 mg/kg·d), DN+medium CA group(11.2 mg/kg·d) and DN+low CA group(5.6 mg/kg·d), and each group was intragastric administration one time every morning last for 16 weeks. The expressions of mRNA and protein of TGF-β, TβR1, TβR2, Smad2/3, Smad7 and the level of Smad2/3 phosphorylation were detected by using real time quantitative polymerase chain reaction and Western blot.
RESULTS:
The expressions of mRNA and protein of TGF-β, TβR1, TβR2, Smad2/3 and the level of Smad2/3 phosphorylation were significantly increased, the expressions of mRNA and protein of Smad7 were dramatically decreased. The fosinopril and high dosage CA could reverse the effects of DN.
CONCLUSIONS
CA plays an important role in preventing and curing DN through regulating the TGF-β/Smad signaling pathways.
Animals
;
Centella
;
chemistry
;
Diabetes Mellitus, Experimental
;
Diabetic Nephropathies
;
chemically induced
;
drug therapy
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
physiopathology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Transforming Growth Factor-beta Type I
;
metabolism
;
Receptor, Transforming Growth Factor-beta Type II
;
metabolism
;
Signal Transduction
;
Smad2 Protein
;
metabolism
;
Smad3 Protein
;
metabolism
;
Smad7 Protein
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
8.Effect of supplementing Qi-nourishing Yin-dispersing blood stasis-dredging collateral herbs on p38 MAPK signaling pathway in kidney of early diabetic rats.
Wenhong ZHAO ; Zhiqiang CHEN ; Jianghua ZHANG ; Yufeng SUN ; Yuehua WANG ; Huiqing WANG
China Journal of Chinese Materia Medica 2010;35(6):768-771
OBJECTIVETo study the effect of supplementing Qi-nourishing Yin and dispersing blood stasis-dredging collateral herbs on p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in the kidney of early diabetic rats.
METHODDividing SD rats randomly into 6 groups: Simple nephrectomy group, model group, irbesatan group, traditional Chinese medicine (TCM) low dose group, TCM middle dose group and TCM high dose group. Each group of rats was fed with the corresponding dose of medicine. After 6 weeks, detecting 24 h urine protein (UPro) level, renal function, p38 MAPK mRNA and p-p38 MAPK protein level.
RESULTUPro levels of irbesatan group, TCM low group and TCM middle dose group decreased significantly (P < 0.05) , compared with that of the model group. Renal function of the treated groups was improved greatly and their p38 MAPK mRNA and p-p38MAPK protein levels decreased significantly (P < 0.05), compared with those of the model group.
CONCLUSIONSupplementing Qi-nourishing Yin-dispersing blood stasis-dredging collateral herbs could treat DN rats effectively by inhibiting the expression of p38 MAPK signaling pathway.
Animals ; Asteraceae ; chemistry ; Diabetes Mellitus, Experimental ; drug therapy ; Diagnosis, Differential ; Drugs, Chinese Herbal ; therapeutic use ; Kidney ; drug effects ; physiopathology ; Kidney Function Tests ; methods ; Kidney Tubules ; drug effects ; MAP Kinase Signaling System ; drug effects ; physiology ; Medicine, Chinese Traditional ; methods ; Qi ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Ureteral Obstruction ; chemically induced ; p38 Mitogen-Activated Protein Kinases ; metabolism