1.The effects of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus based on RhoA/ROCK pathway.
Yao LU ; Lin SHI ; Le WANG ; Xiaoli LUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):992-999
Objective To investigate the effect and mechanism of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus (GDM). Methods Female rats fed with high-fat and high-sugar diet and male rats fed with ordinary diet were caged together to prepare pregnant rats, and the GDM rat model was established by intraperitoneal injection of streptozotocin (35 mg/kg). GDM rats were randomly divided into a model group, a fasudil (FA) (RhoA/RocK inhibitor) group (10 mg/kg), low-dose (100 mg/kg) and high-dose (200 mg/kg) baicalin groups, and a high-dose baicalin combined with LPA (RhoA/RocK activator) group (200 mg/kg baicalin+1 mg/kg LPA ), with 12 rats in each group. Another 12 pregnant rats fed with high-fat and high-sugar diet were selected as the control group. After 2 weeks of corresponding drug intervention in each group, the level of fasting blood glucose (FBG) was detected by blood glucose meter. The level of fasting insulin (FINS) in serum was detected by ELISA, and the insulin resistance index (HOMA-IR) was calculated. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) in serum, and the levels of immunomodulator tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-10 in peripheral blood were detected by the kit. The histopathological changes of liver were observed by HE staining. The proportion of T lymphocyte subsets in peripheral blood was detected by flow cytometry. The mRNA and protein expressions of Ras homolog gene family member A (RhoA), Rho associated coiled-coil forming protein kinase 1 (ROCK1), and ROCK2 in liver tissue were detected by real-time quantitative PCR and Western blot. Results Compared with the control group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the model group were higher; the level of HDL-C in serum, the percentage of IL-10 levels, CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were lower. Compared with the model group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the the FA group and low-dose and high-dose baicalin groups were lower; the level of HDL-C in serum, IL-10 level, the percentage of CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were higher. LPA could obviously weaken the improvement effects of baicalin on blood lipid metabolism and immune function in GDM rats. Conclusion Baicalin may improve blood lipid metabolism and immune function in GDM rats by inhibiting the RhoA/ROCK pathway.
Animals
;
Female
;
Diabetes, Gestational/metabolism*
;
Pregnancy
;
rho-Associated Kinases/genetics*
;
Flavonoids/pharmacology*
;
Rats
;
rhoA GTP-Binding Protein/genetics*
;
Lipid Metabolism/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
Rats, Sprague-Dawley
;
Blood Glucose/metabolism*
;
Lipids/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
rho GTP-Binding Proteins
2.Causal relationship between gut microbiota and diabetes based on Mendelian randomization.
Manjun LUO ; Ziye LI ; Mengting SUN ; Jiapeng TANG ; Tingting WANG ; Jiabi QIN
Journal of Central South University(Medical Sciences) 2025;50(3):469-481
OBJECTIVES:
The gut microbiota plays a crucial role in the pathophysiology of various types of diabetes. However, the causal relationship between them has yet to be systematically elucidated. This study aims to explore the potential causal associations between gut microbiota and diabetes using a two-sample Mendelian randomization (MR) analysis, based on multiple taxonomic levels.
METHODS:
Eligible instrumental variables were extracted from the selected genome-wide association study (GWAS) data on gut microbiota. These were combined with GWAS datasets on type 1 diabetes (T1D), type 2 diabetes (T2D), and gestational diabetes mellitus (GDM) to conduct forward MR analysis, sensitivity analysis, reverse MR analysis, and validation of significant estimates. Microbial taxa with causal effects on T1D, T2D, and GDM were identified based on a comprehensive assessment of all analytical stages.
RESULTS:
A total of 2 179, 2 176, and 2 166 single nucleotide polymorphisms (SNP) were included in the MR analyses for gut microbiota with T1D, T2D, and GDM, respectively. MR results indicated causal associations between: Six microbial taxa (Eggerthella, Lachnospira, Bacillales, Desulfovibrionales, Parasutterella, and Turicibacter) and T1D; 9 microbial taxa (Verrucomicrobia, Deltaproteobacteria, Actinomycetales, Desulfovibrionale, Actinomycetaceae, Desulfovibrionaceae, Actinomyces, Alcaligenaceae, and Lachnospiraceae NC2004 group) and T2D; 10 microbial taxa (Betaproteobacteria, Coprobacter, Ruminococcus2, Tenericutes, Clostridia, Methanobacteria, Mollicutes, Methanobacteriales, Methanobacteriaceae, and Methanobrevibacter) and GDM.
CONCLUSIONS
This study identified specific gut microbial taxa that may significantly increase or decrease the risk of developing diabetes. Some findings were fully replicated in independent validation datasets. However, the underlying biological mechanisms of these causal relationships warrant further investigation through mechanistic studies and population-based research.
Gastrointestinal Microbiome/genetics*
;
Humans
;
Mendelian Randomization Analysis
;
Genome-Wide Association Study
;
Diabetes Mellitus, Type 2/genetics*
;
Diabetes Mellitus, Type 1/genetics*
;
Female
;
Polymorphism, Single Nucleotide
;
Diabetes, Gestational/genetics*
;
Pregnancy
3.Role of melatonin receptor 1B gene polymorphism and its effect on the regulation of glucose transport in gestational diabetes mellitus.
Lijie WEI ; Yi JIANG ; Peng GAO ; Jingyi ZHANG ; Xuan ZHOU ; Shenglan ZHU ; Yuting CHEN ; Huiting ZHANG ; Yuanyuan DU ; Chenyun FANG ; Jiaqi LI ; Xuan GAO ; Mengzhou HE ; Shaoshuai WANG ; Ling FENG ; Jun YU
Journal of Zhejiang University. Science. B 2023;24(1):78-88
Melatonin receptor 1B (MT2, encoded by the MTNR1B gene), a high-affinity receptor for melatonin, is associated with glucose homeostasis including glucose uptake and transport. The rs10830963 variant in the MTNR1B gene is linked to glucose metabolism disorders including gestational diabetes mellitus (GDM); however, the relationship between MT2-mediated melatonin signaling and a high birth weight of GDM infants from maternal glucose abnormality remains poorly understood. This article aims to investigate the relationship between rs10830963 variants and GDM development, as well as the effects of MT2 receptor on glucose uptake and transport in trophoblasts. TaqMan-MGB (minor groove binder) probe quantitative real-time polymerase chain reaction (qPCR) assays were used for rs10930963 genotyping. MT2 expression in the placenta of GDM and normal pregnant women was detected by immunofluorescence, western blot, and qPCR. The relationship between MT2 and glucose transporters (GLUTs) or peroxisome proliferator-activated receptor γ (PPARγ) was established by western blot, and glucose consumption of trophoblasts was measured by a glucose assay kit. The results showed that the genotype and allele frequencies of rs10830963 were significantly different between GDM and normal pregnant women (P<0.05). The fasting, 1-h and 2-h plasma glucose levels of G-allele carriers were significantly higher than those of C-allele carriers (P<0.05). Besides, the protein and messenger RNA (mRNA) expression of MT2 in the placenta of GDM was significantly higher than that of normal pregnant women (P<0.05). Melatonin could stimulate glucose uptake and GLUT4 and PPARγ protein expression in trophoblasts, which could be attenuated by MT2 receptor knockdown. In conclusion, the rs10830963 variant was associated with an increased risk of GDM. The MT2 receptor is essential for melatonin to raise glucose uptake and transport, which may be mediated by PPARγ.
Female
;
Humans
;
Pregnancy
;
Blood Glucose/metabolism*
;
Diabetes, Gestational/metabolism*
;
Glucose/metabolism*
;
Melatonin/metabolism*
;
Polymorphism, Genetic
;
PPAR gamma
;
Receptor, Melatonin, MT2/genetics*
4.Relationship between vitamin D receptor gene polymorphisms and gestational diabetes mellitus: a case-control study.
Jin Bo LI ; Meng Zhu GUO ; Wang Jun LI ; Qing Wen REN ; Yong Liang FENG ; Hai Lan YANG ; Ya Wei ZHANG ; Su Ping WANG ; Wei Wei WU
Chinese Journal of Epidemiology 2022;43(9):1455-1461
Objective: To investigate the relationship between vitamin D receptor (VDR) gene polymorphisms and gestational diabetes mellitus (GDM) and provide evidence for the study of the mechanism of GDM. Methods: A case-control study design was used to study pregnant women who delivered in the obstetrics department of the First Hospital of Shanxi Medical University from March 1, 2012 to July 30, 2014. Of these, 334 cases were diagnosed with GDM and were matched 1∶1 by age, gestation time and residence to corresponding healthy controls. DNA genotyping was performed for the study subjects, and those with genotyping deletions >10% were excluded. Finally 323 cases and 320 controls were included in the study. Under co-dominant, dominant, recessive, and allele genetic models, unconditional logistic regression analysis on the relationship between VDR gene locus polymorphism and GDM was conducted. And software Haploview was used to analyze the relationship between haplotype and GDM. Results: At the genetic level, VDR gene was associated with the risk of developing GDM (P<0.05). After adjusting for pre-pregnancy body mass index, family history of diabetes, it was found that rs7967152 loci was associated with an increased risk of developing GDM (AC vs. AA, OR=1.58, 95%CI: 1.13-2.21; AC+CC vs. AA, OR=1.58, 95%CI: 1.15-2.18; C vs. A, OR=1.41, 95%CI: 1.10-1.82) and rs2238140 loci was associated with an increased risk of developing GDM (AA vs. GG, OR=2.24, 95%CI: 1.19-4.20; GA+AA vs. GG, OR=1.48, 95%CI: 1.07-2.03; A vs. G, OR=1.43, 95%CI: 1.11-1.83). Carrying rs2853564 locus AG genotype and AG+GG genotype (OR=1.46, 95%CI: 1.04-2.05; OR=1.45, 95%CI: 1.05-2.00) compared with carrying AA genotype and carrying rs2853566 locus AG genotype and AG+GG genotype (OR=1.43, 95%CI: 1.03-2.00; OR=1.41, 95%CI: 1.02-1.94) compared with carrying AA genotype were risk factors for GDM. Haplotype block consisting of rs1544410, rs7967152 in the VDR gene with GC haplotype was a risk factor for GDM(OR=1.50, 95%CI: 1.15-1.97). Conclusions: VDR gene rs7967152, rs2238140, rs2853564, rs2853566 locus polymorphisms and block (rs1544410, rs7967152) GC haplotype were associated with an incrased risk of developing GDM.
Case-Control Studies
;
Diabetes, Gestational/genetics*
;
Female
;
Genotype
;
Humans
;
Polymorphism, Single Nucleotide
;
Pregnancy
;
Receptors, Calcitriol/genetics*
5.Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes.
Chinese Medical Journal 2022;135(16):1940-1951
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Pregnancy
;
Female
;
Humans
;
Diabetes, Gestational/genetics*
;
Proteomics
;
Postpartum Period
;
Biomarkers/metabolism*
;
MicroRNAs/genetics*
;
Diabetes Mellitus, Type 2
6.Association of DUSP9 gene polymorphisms with gestational diabetes mellitus.
Xuexin WANG ; Li ZHANG ; Guojin OU ; Qiang WEI ; Lin WU ; Qiang CHEN
Chinese Journal of Medical Genetics 2019;36(3):267-270
OBJECTIVE:
To assess the association of single nucleotide polymorphisms (SNPs) of dual specificity phosphatase 9 (DUSP9) gene rs5945326 locus with gestational diabetes mellitus (GDM).
METHODS:
Genotypes for the rs5945326 locus were determined for 206 pregnant women with GDM (GDM group) and 189 unaffected pregnant women (control group). Allelic and genotypic frequencies of the GDM and control groups were compared. For individuals with various genotypes, the level of blood glucose, serum lipids, and body mass index (BMI) were also compared.
RESULTS:
The frequencies of AA, AG and GG genotypes for the GDM group were 32.2%, 52.2% and 15.6%, respectively, and 41.2%, 43.9% and 15.0%, for the control group, respectively. No significant difference was detected in the distribution of above genotypes between the two groups (chi-square=3.601, P=0.165). The frequencies of alleles A and G were 58.3% and 41.7% in the GDM group, and 63.1% and 36.9% in the control group, respectively. No significant difference was detected between the two groups too (chi-square=1.894, P=0.188). The high density lipoprotein (HDL) levels of the GG genotype [(2.34×0.61) mmol/L] was significantly higher than that of the AG+AA genotype [(2.06×0.56) mmol/L] (t=2.993, P=0.003). No significant difference was detected in other clinical indexes between the two groups (P> 0.05).
CONCLUSION
The SNP rs5945326 in DUSP9 gene may be not associated with the risk of GDM. However, there are correlated with HDL levels.
Alleles
;
Diabetes, Gestational
;
genetics
;
Dual-Specificity Phosphatases
;
genetics
;
Female
;
Gene Frequency
;
Genotype
;
Humans
;
Mitogen-Activated Protein Kinase Phosphatases
;
genetics
;
Polymorphism, Single Nucleotide
;
Pregnancy
7.Association of Variants in PPARgamma2, IGF2BP2, and KCNQ1 with a Susceptibility to Gestational Diabetes Mellitus in a Korean Population.
Seung Joo CHON ; Suk Young KIM ; Nu Ree CHO ; Dle Lae MIN ; Yu Jin HWANG ; Mizuko MAMURA
Yonsei Medical Journal 2013;54(2):352-357
PURPOSE: Patients with gestational diabetes mellitus (GDM) have been reported to exhibit the same genetic susceptibility as that observed in those with type 2 diabetes mellitus (T2DM). Recent polymorphism studies have shown that several genes are related to T2DM and GDM. The aim of this study was to examine whether certain candidate genes, previously shown to be associated with T2DM, also offer a specific genetic predisposition to GDM. MATERIALS AND METHODS: The current study was conducted in 136 Korean pregnant women, who gave birth at Gil Hospital, from October 2008 to May 2011. These study subjects included 95 subjects with GDM and 41 non-diabetic controls. We selected the specific genes of PPARgamma2, IGF2BP2, and KCNQ1 for study and amplified them using the polymerase chain reaction. This was followed by genotyping for single nucleotide polymorphisms. We then compared the genotype frequencies between patients with GDM and non-diabetic controls using the chi2 test. We obtained and analyzed clinical information using Student's t-test, and statistical analyses were conducted using logistic regression with SPSS Statistics software, version 19.0. RESULTS: Significant differences were observed in maternal age, body mass index, weight gain and weight at time of delivery between the groups compared. Among pregnant women, polymorphisms in PPARgamma2 and IGF2BP2 were shown to be highly correlated with GDM occurrence, whereas no correlation was found for KCNQ1 polymorphisms. CONCLUSION: Our results indicated that genetic polymorphisms could also be of value in predicting the occurrence and diagnosis of GDM.
Diabetes, Gestational/*genetics
;
Female
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
KCNQ1 Potassium Channel/*genetics
;
Logistic Models
;
PPAR gamma/*genetics
;
Polymorphism, Single Nucleotide
;
Pregnancy
;
RNA-Binding Proteins/*genetics
;
Republic of Korea
8.Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients.
Jun YU ; Yong ZHOU ; Juan GUI ; Ai-Zhen LI ; Xiao-Ling SU ; Ling FENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):725-729
In order to assess the number and function of macrophages in the placenta of pregnancy complicated with gestational diabetes mellitus (GDM) as well as those of normal pregnancies, placenta samples were collected from 15 GDM patients (GDM group) and 10 normal pregnant women (control group). The expression levels of macrophage markers (CD68/CD14) and inflammatory cytokines (IL-6/TNF-α) in placenta were detected using immunohistochemistry and PCR. The results showed that the number of CD68+ or CD14+ cells in the GMD group was remarkably higher than that in the control group (P<0.05), indicating that the number of macrophages in the GDM group was significantly greater than that in the control group. The mRNA expression levels of CD68+, IL-6 and TNF-α were higher in the GMD group than in the control group. In conclusion, more macrophages accumulate in placenta of pregnancy complicated with GDM, and the expression levels of pro-inflammation factors are also increased in GDM pregnancies, suggesting that macrophages and inflammatory mediators (IL-6 and TNF-α) may play an important role in GDM.
Adult
;
Antigens, CD
;
Antigens, Differentiation, Myelomonocytic
;
Cell Count
;
Cytokines
;
genetics
;
immunology
;
metabolism
;
Diabetes, Gestational
;
genetics
;
immunology
;
metabolism
;
Female
;
Humans
;
Immunohistochemistry
;
Inflammation Mediators
;
immunology
;
metabolism
;
Interleukin-6
;
genetics
;
immunology
;
metabolism
;
Lipopolysaccharide Receptors
;
genetics
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
pathology
;
Placenta
;
immunology
;
metabolism
;
Pregnancy
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
metabolism
9.Familial Clustering of Type 2 Diabetes in Korean Women with Gestational Diabetes Mellitus.
Sang Youl RHEE ; Joo Young KIM ; Jeong Taek WOO ; Young Seol KIM ; Sung Hoon KIM
The Korean Journal of Internal Medicine 2010;25(3):269-272
BACKGROUND/AIMS: This study was conducted to examine the relationship between family history of type 2 diabetes (T2DM) and risk of developing gestational diabetes mellitus (GDM) in Korean women. METHODS: We performed a 100-g oral glucose tolerance test in 858 pregnant women who had abnormal glucose tolerance in 50-g oral glucose challenge. In addition, we reviewed the incidence of T2DM in the parents and siblings and analyzed the association between the familial history of T2DM and the risk of GDM. RESULTS: Of the 858 subjects, 427 were normal, and 431 were diagnosed with GDM. Compared with women with no family history of T2DM, women with first degree family history of T2DM displayed higher risk of T2DM (odd ratio: parent only 1.91, sibling only 6.24, any 2.27). CONCLUSIONS: The risk of developing GDM was significantly increased in Korean women with a family history of T2DM in first-degree relatives.
Adult
;
Cluster Analysis
;
Diabetes Mellitus, Type 2/*genetics
;
Diabetes, Gestational/diagnosis/*genetics
;
Female
;
Genetic Predisposition to Disease
;
Glucose Tolerance Test
;
Humans
;
Korea
;
Male
;
Parents
;
Pregnancy
;
Risk Factors
;
Siblings
10.The Effect of Parental Transmission of Diabetes on the Development of Gestational Diabetes Mellitus.
The Korean Journal of Internal Medicine 2010;25(3):237-238
No abstract available.
Diabetes Mellitus, Type 2/genetics
;
Diabetes, Gestational/*etiology/genetics
;
Female
;
Humans
;
Infant, Newborn
;
Korea
;
Male
;
Pregnancy
;
Risk Factors

Result Analysis
Print
Save
E-mail