1.Effect of Pinch-3 gene interference of glomerular podocytes on cell morphology and cell traction force.
Yu YANG ; Qingyuan NIU ; Zhenling JI ; Jingjing ZHANG ; Jianting LI ; Deshun MA
Journal of Biomedical Engineering 2013;30(3):530-533
Pinch-3 protein is an important constituent of cell membranes, which directly affects the cell morphology and mechanical properties. We observed and compared the change of morphology and cell traction force of glomerular podocytes before and after Pinch-3 gene inhibition by gene interference technology in this experiment. We found that a number of pores appeared on the cell surface, and the cell projected area were increased at the same time, with an approximate average about an increase of 40% after Pinch-3 gene inhibition. The results showed that the cell traction force of glomerular podocytes was significantly reduced, with an approximate average decrease of 40%, the maximum value of the cell traction force was reduced and the distribution of cell traction force became dispersive. All this suggested that after Pinch-3 gene inhibition, some pores created on the cell surface influenced the physical properties of glomerular podocytes and then affected the cell projected area and influenced the formation and distribution of cell traction force of the glomerular podocytes as well.
Adaptor Proteins, Signal Transducing
;
genetics
;
physiology
;
Biomechanical Phenomena
;
Cell Movement
;
Genetic Engineering
;
Humans
;
Kidney Glomerulus
;
cytology
;
LIM Domain Proteins
;
genetics
;
physiology
;
Mechanotransduction, Cellular
;
physiology
;
Membrane Proteins
;
genetics
;
physiology
;
Podocytes
;
cytology
;
physiology
;
Stress, Mechanical
2.Screening of common deafness gene mutations in 17 000 Chinese newborns from Chengdu based on microarray analysis.
Kangmo LYU ; Yehua XIONG ; Hao YU ; Ling ZOU ; Longrong RAN ; Deshun LIU ; Qin YIN ; Yingwen XU ; Xue FANG ; Zuling SONG ; Lijia HUANG ; Dayong TAN ; Zhiwei ZHANG
Chinese Journal of Medical Genetics 2014;31(5):547-552
OBJECTIVETo achieve early diagnosis for inheritable hearing loss and determine carrier rate of deafness causing gene mutations in order to provide information for premarital, prenatal and postnatal genetic counseling.
METHODSA total of 17 000 dried heel blood spots of normal newborns in Chengdu were collected with informed consent obtained from their parents. Genomic DNA was extracted from dried blood spots using Qiagen DNA extraction kits. Microarrays with 9 common mutation loci of 4 deafness-associated genes in Chinese population were used. Nine hot mutations including GJB2 (35delG, 176del16, 235delC and 299delAT), GJB3 (538C> T), SLC26A4 (IVS 7-2A> G, 2168A> G), and mitochondrial DNA 12S rRNA (1555A> G, 1494C> T) were detected by PCR amplification and microarray hybridization. Mutations detected by microarray were verified by Sanger DNA sequencing.
RESULTSOf the 17 000 new-borns, 542 neonates had mutations of the 4 genes. Heterozygous mutations of GJB2, at 235delC, 299delAT, and 176del16 were identified in 254, 55, and 15 newborns, respectively. Two newborns had homozygous mutation of GJB2, 235delC. Heterozygous mutations at 538C> T of GJB3, 2168A> G and IVS 7-2A> G of SLC26A4 were found in 23, 17 and 128 newborns, respectively. For mutation analysis of mitochondrial DNA 12S rRNA, 1494C> T and 1555A> G were homogeneous mutations in 4 and 42 neonates, respectively. In addition, 6 complexity mutations were detected, which demonstrated that one newborn had heterozygous mutations at GJB2 235delC and SLC26A4, IVS7-2A> G, one had heterozygous mutation GJB2 235delC and 12S rRNA homogeneous mutation, 1555 A> G, one heterozygous mutations at GJB2, 299delAT, and GJB3, 538C> T, one at GJB2, 299delAT and 12S rRNA, 1555 A> G, two at GJB2, 299delAT, and SLC26A4, IVS7-2A> G. All mutations as above were confirmed by DNA sequencing.
CONCLUSIONThe total mutation carrier rate of the 4 deafness genes is 3.19% in healthy newborns at Chengdu. Mutations of GJB2 and SLAC26A4 are major ones (86.5% of total). The mutation rate of mitochondrial DNA 12S rRNA is 2.71‰, which may have deafness induced by aminoglycoside antibiotics. Newborn screening for mutation of genes related to hereditary deafness plays an important role in the early detection and proper management for neonatal deafness as well as genetic counseling for premarital, prenatal and postnatal diagnosis.
Asian Continental Ancestry Group ; genetics ; Base Sequence ; China ; Connexin 26 ; Connexins ; genetics ; DNA Mutational Analysis ; DNA, Mitochondrial ; chemistry ; genetics ; Deafness ; diagnosis ; ethnology ; genetics ; Dried Blood Spot Testing ; Genetic Predisposition to Disease ; ethnology ; genetics ; Genetic Testing ; methods ; Humans ; Infant, Newborn ; Membrane Transport Proteins ; genetics ; Microarray Analysis ; methods ; Mutation ; Neonatal Screening ; methods ; RNA, Ribosomal ; genetics