1.Profiling and identification of in vivo metabolism of rosmarinic acid in rats.
Shao-Bo GUO ; Lu-Lu XU ; Li-Juan JIANG ; Fei WANG ; Zi-Jian WANG ; Jia-Yu ZHANG ; Bin LIU
China Journal of Chinese Materia Medica 2019;44(21):4704-4712
Rosmarinic acid,a hydrosoluble polyphenolic hydroxyl compound,is the active ingredient in such traditional Chinese medicines as Menthae Haplocalycis Herba,Salviae Miltiorrhizae Radix et Rhizoma,Rosemary,Perillae Folium. Because of its good anti-inflammatory,anti-oxidant and anti-tumor effects,it is widely used in food,medicine and other fields. However,the metabolic process and metabolites of rosmarinic acid in vivo have not been completely defined. In this study,an efficient method of ultra-high performance liquid chromatography combined with linear ion trap-Orbitrap(UHPLC-LTQ-Orbitrap) mass spectrometer was used to analyze the metabolites in vivo of rosmarinic acid in rats. Plasma,urine and feces samples were collected after oral administration of rosmarinic acid. After biological samples were processed by solid phase extraction,Acquity UPLC BEH C18 column(2. 1 mm × 100 mm,1. 7 μm) was used with 0. 1% formic acid(A)-acetonitrile(B) solution as the mobile phase at the speed of 0. 30 m L·min-1 and temperature of 35 ℃ under gradient conditions. The plasma,urine,feces and the blank samples were then analyzed by ESI-LTQ-Orbitrap under both negative and positive ion modes. Based on the accurate mass measurement(<5),MS/MS fragmentation patterns,standards and literatures,a total of 36 metabolites were screened out and identified in the biological samples collected from rats after intragastric administration. Three were identified 3 from rat plasma,31 from urine,and 7 from feces. The main metabolic pathways of rosmarinic acid in rats can be divided into five parts. Rosmarinic acid were first decomposed into small molecules,such as trans-caffeic acid,coumaric acid,m-hydroxybenzoic acid and Danshensu,which were followed by sulfation,methylation,glucuronic acid conjugation and glucose conjugation. The results showed that UHPLC-LTQ-Orbitrap mass spectrometer could be used to analyze the metabolism of rosmarinic acid in rats,and provide reference for further studies on toxicology,pharmacodynamics and secondary development of Chinese medicine.
Animals
;
Chromatography, High Pressure Liquid
;
Cinnamates/metabolism*
;
Depsides/metabolism*
;
Drugs, Chinese Herbal/metabolism*
;
Rats
;
Tandem Mass Spectrometry
;
Rosmarinic Acid
2.Regulation effects of intracellular and extracellular Ca2+ on biosynthesis of rosmarinic acid induced by salicylic acid in young seedlings of Salvia miltiorrhiza.
Rong-Rong CAO ; Xiao-Lin DANG ; Bing-Yu XING ; Jing-Yi ZHANG ; Juan-E DONG
China Journal of Chinese Materia Medica 2013;38(20):3424-3431
OBJECTIVETo investigate the effect of intracellular and extracellular Ca2+ on the biosynthesis of rosmarinic acid (RA) induced by salicylic acid in young seedlings of Salvia miltiorrhiza.
METHODYoung seedlings of S. miltiorrhiza were used to select an optimal concentration of salicylic acid (SA), and then use the optimal concentration of SA to investigate the effects of extracellular Ca2+ channel inhibitors Verapamil, LaCl3, intracelluar calmodulin antagonist TFP and intracelluar Ca2+ channel inhibitors LiCl on the biosynthesis of RA and related enzymes.
RESULTSA increased the accumulation of RA and the activities of PAL and TAT, especially the SA of 2 mmol x L(-1) after 24 h. SA improved the accumulation of RA to (40.51 +/- 2.16) mg x g(-1), which was 1.97 times than that of control, and the activities of PAL, TAT were 1.42 times and 1.29 times than those of the control. However, Vp, LaCl3, TFP, LiCl inhibited the effects of SA evidently.
CONCLUSIONCa2+ plays a key role in the regulation of the induction process.
Calcium ; metabolism ; Cinnamates ; metabolism ; Depsides ; metabolism ; Gene Expression Regulation, Plant ; Plant Proteins ; genetics ; metabolism ; Salicylic Acid ; metabolism ; Salvia miltiorrhiza ; genetics ; growth & development ; metabolism ; Seedlings ; genetics ; growth & development ; metabolism
3.Effects of salicylic acid on synthesis of rosmarinic acid and related enzymes in the suspension cultures of Salvia miltiorrhiza.
Mengli JIAO ; Rongrong CAO ; Hongyan CHEN ; Wenfang HAO ; Juan'e DONG
Chinese Journal of Biotechnology 2012;28(3):320-328
Rosmarinic acid (RA), a phenolic acid, is one of the important secondary metabolites produced in Salvia miltiorrhiza. To observe the influence of salicylic acid (SA), an elicitor, on the synthesis of RA and related enzymes, we treated the cell suspension cultures of S. miltiorrhiza with SA and L-a-aminooxy-beta-phenylpropionic acid (AOPP), a competitive inhibitor of tyrosine aminotransferase (TAT). Under this condition, the activities of related enzymes, such as phenylalanine ammonia-lyase and TAT were traced and assayed; the accumulative amount of RA was measured. The results showed that the PAL activity reached the peak at 4 h, 124% higher than that of the control, and the content of RA reached its maximum ((5.914 +/- 0.296) mg/g dry weight) at 8 h, after treated by 6.25 mg/L SA on day 6 of the suspension culture. The results of treatment with 0.1 micromol/L AOPP showed that AOPP affected little on the TAT activity, while the PAL activity was significantly influenced, with 44% lower than that of the control at 6 h. Meanwhile, the reduced accumulation of RA ((4.709 +/- 0.204) mg/g dry weight) paralleled with the decrease in PAL activity. The co-treatment by 0.1 micromol/L AOPP and 6.25 mg/L SA relieved the restriction imposed by AOPP on PAL, and made the cell cultures accumulate more RA than sole treatment with AOPP, indicated that SA induced the accumulation of RA in suspension cell culture of S. miltiorrhiza, and the rate-limiting effect of PAL was stronger than TAT.
Cell Culture Techniques
;
methods
;
Cinnamates
;
metabolism
;
Depsides
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Plant Cells
;
metabolism
;
Salicylic Acid
;
pharmacology
;
Salvia miltiorrhiza
;
cytology
;
growth & development
;
metabolism
;
Suspensions
;
Tyrosine Transaminase
;
metabolism
4.Effects of calcium on synthesis of rosmarinic acid and related enzymes in suspension cultures of Salvia miltiorrhiza.
Liancheng LIU ; Juan'e DONG ; Jingyi ZHANG ; Xiaolin DANG ; Bingyu XING ; Xiling YANG
Chinese Journal of Biotechnology 2012;28(11):1359-1369
We studied the influence of the concentration of Ca2+ (0-50 mmol/L) in culture medium on the synthesis of rosmarinic acid (RA) and related enzymes in Salvia miltiorrhiza suspension cultures. Using verpamil (VP, a calcium channel antagonist) and ionophore A23187, we studied the mechanism of secondary metabolites of Salvia miltiorrhiza suspension cultures influenced by the concentration of Ca2+ in the culture medium. The synthesis of intracellular RA in 6-day incubation was significantly dependent on the medium Ca2+ concentration. At the optimal Ca2+ concentration of 10 mmol/L, a maximal RA content of 20.149 mg/g biomass dry weight was reached, which was about 37.3% and 20.4% higher than that at Ca2+ concentrations of 1 and 3 mmol/L, respectively. The variation of the activity of PAL and TAT, two key enzymes of the two branches of RA, could be affected by the concentration of Ca2+ in culture medium. The change of their activity occurred prior to the accumulation of RA, which suggested both of the key enzymes be involved in the synthesis of RA. Meanwhile, the enzymatic action of PAL was more distinct than TAT. The treatment of VP and A23187, respectively, indicated that the influence of RA affected by the concentration of Ca2+ in the culture medium was accomplished by the intracellular Ca2+, and the flow of Ca2+ from the extracellular to the intracellular environment could also participate in this process.
Calcium
;
pharmacology
;
Cinnamates
;
metabolism
;
Culture Media
;
Culture Techniques
;
methods
;
Depsides
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Salvia miltiorrhiza
;
chemistry
;
enzymology
;
growth & development
;
Tyrosine Transaminase
;
metabolism
5.Optimization of induction and culture conditions for hairy roots of Salvia miltiorrhiza.
Rong-Hui TAN ; Jin-Jia ZHANG ; Shu-Juan ZHAO
China Journal of Chinese Materia Medica 2014;39(16):3048-3053
To establish induction and liquid culture system for hairy roots of Danshen (Salvia miltiorrhiza), Agrobacterium rhizogenes A4, LBA9402, 15834 as test bacterium were used to infect aseptic leaves of Danshen. The hairy roots were induced and positive transgenic hairy roots were selected with PCR using rolB and rolC as the target gene. Then hairy roots of S. miltiorrhiza were harvested and salvianolic acids were extracted with 70% methanol containing 1% formic acid. The content of salvianolic acid B (SalB) and rosmarinic acid (RA) were determined by HPLC. According to the above research results, the Danshen hairy roots induced by A. rhizogenes LBA9402 were inoculated into the following group of culture media: MSOH, MS, B5, and 6,7-V liquid media. Then the same methods of extraction and determination for the content of Danshen hairy roots were adopted. Last, the hairy roots of S. miltiorrhiza induced by A. rhizogenes LBA9402 were inoculated into the MSOH liquid media with different pH values. The content of salvianolic acid were extracted with 70% methanol containing 1% formic acid and determined by HPLC. As a result, three kinds of A. rhizogenes A4, LBA9402, 15834 could induce hairy roots and Ri plasmids were integrated into the genome of S. miltiorrhiza by PCR. Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid, which were (3.27 ± 0.37)% [including (1.04 ±0.36)% of RA and (2.22 ± 0.29)% of SalB] and (3.17 ± 0.20)% [including (0.92 ± 0.31)% of RA and (2.25 ± 0.26)% of SalB], respectively. Hairy roots induced by A. rhizogenes LBA9402 when they were cultured in MSOH liquid media produced much more salvianolic acid, which was (4.56 ± 0.36)%, including (1.12 ± 0.26)% of RA and (3.44 ± 0.23)% of SalB. Hairy roots induced by A. rhizogenes LBA9402 produced the most salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81, which was 4.85%, including 1.16% of RA and 3.69% of SalB. So Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81. The research had established the foundation on genetic engineering to improve the quality of S. miltiorrhiza.
Agrobacterium
;
physiology
;
Benzofurans
;
analysis
;
metabolism
;
Cell Culture Techniques
;
instrumentation
;
methods
;
Cinnamates
;
analysis
;
metabolism
;
Culture Media
;
chemistry
;
metabolism
;
Depsides
;
analysis
;
metabolism
;
Drugs, Chinese Herbal
;
analysis
;
metabolism
;
Plant Roots
;
chemistry
;
growth & development
;
metabolism
;
microbiology
;
Salvia miltiorrhiza
;
chemistry
;
growth & development
;
metabolism
;
microbiology
6.Preparation of salvianolic acid B, tanshinone Ⅱ_A, and glycyrrhetinic acid lipid emulsion and its protective effect against acute liver injury induced by acetaminophen.
Xiu-Rong ZHANG ; Tao LIN ; Xiu-Li WANG ; Xiao-Jie WANG ; Heng GU
China Journal of Chinese Materia Medica 2022;47(17):4634-4642
Salvianolic acid B(Sal B), tanshinone Ⅱ_A(TSN Ⅱ_A), and glycyrrhetinic acid(GA) lipid emulsion(GTS-LE) was prepared by the high-speed dispersion method combined with ultrasonic emulsification.The preparation process of the emulsion was optimized by single-factor method and D-optimal method with appearance, centrifugal stability, and particle size of the emulsion as evalua-tion indexes, followed by verification.In vitro release of Sal B, TSN Ⅱ_A, and GA in GTS-LE was performed by reverse dialysis.In vivo pharmacokinetic evaluation was carried out in mice.The acute liver injury model was induced by acetaminophen.The effect of oral GTS-LE on the acute liver injury was investigated by serum liver function indexes and pathological changes in liver tissues of mice.The results showed that under the optimal preparation process, the average particle size of GTS-LE was(145.4±9.25) nm and the Zeta potential was(-33.6±1.45) mV.The drug-loading efficiencies of Sal B, TSN Ⅱ_A, and GA in GTS-LE were above 95%, and the drug release in vitro conformed to the Higuchi equation.The pharmacokinetic results showed that the C_(max) of Sal B, TSN Ⅱ_A, and GA in GTS-LE was 3.128, 2.7, and 2.85 times that of the GTS-S group, and AUC_(0-t) of Sal B, TSN Ⅱ_A, and GA in GTS-LE was 3.09, 2.23, and 1.9 times that of the GTS-S group.After intragastric administration of GTS-LE, the activities of alanine aminotransferase and aspartate aminotransferase were significantly inhibited, the content of malondialdehyde was reduced, and the structure of hepatocytes recovered to normal.In conclusion, GTS-LE can delay the release of Sal B and promote the release of TSN Ⅱ_A and GA.The encapsulation of three drug components in the emulsion can improve the oral bioavailability to varying degrees and can effectively prevent the acute liver injury caused by acetaminophen.
Abietanes/therapeutic use*
;
Acetaminophen/therapeutic use*
;
Alanine Transaminase/metabolism*
;
Animals
;
Antipyretics/therapeutic use*
;
Aspartate Aminotransferases/metabolism*
;
Benzofurans/therapeutic use*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Depsides/therapeutic use*
;
Emulsions
;
Glycyrrhetinic Acid/therapeutic use*
;
Liver/drug effects*
;
Malondialdehyde
;
Mice
7.Effect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 subcutaneous xenografts in nude mice.
Xiangping LI ; Zhouye SONG ; Haiying ZHONG ; Zhicheng GONG ; Tao YIN ; Zanling ZHANG ; Boting ZHOU
Journal of Central South University(Medical Sciences) 2015;40(2):158-164
OBJECTIVE:
To exlpore the eff ect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 xenograft tumors and the possible mechanisms.
METHODS:
A total of 36 nude mice were divided into 6 groups: A model group, a negative control group, a positive control group, and 3 treatment groups at low, middle or high dose (n=6). The tumor model of nude mice was given depsides salts at a dose of 10, 20 or 50 mg/kg every 3 day for 16 days. Then samples of subcutaneous tumors in nude mice were collected. The morphological changes of tumor samples were observed by HE staining and the expression of vascular endothelial growth factor (VEGF) and the tumor antigen Ki67 was detected by immunohistochemical method.
RESULTS:
The tumor growth was inhibited by all doses of depsides salts. The morphology of tumors was shrinkage, broken and irregularly arranged compared with the tumors in the model group and the negative control group. Morphological changes were more obvious in tumors with treatment at high dose. Expression of VEGF and Ki67 in treatment groups and the positive control group were lower than that in the model group and the negative control group, with a significant difference (P<0.05).
CONCLUSION
Depsides salts from Salvia miltiorrhiza can inhibit the growth of human hepatoma cell line SMMC-7721 tumor in nude mice, which is related to the inhibition of Ki67 and VEGF.
Animals
;
Carcinoma, Hepatocellular
;
pathology
;
Cell Line, Tumor
;
drug effects
;
Depsides
;
pharmacology
;
Humans
;
Ki-67 Antigen
;
metabolism
;
Liver Neoplasms
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Salts
;
Salvia miltiorrhiza
;
chemistry
;
Vascular Endothelial Growth Factor A
;
metabolism
;
Xenograft Model Antitumor Assays
8.Effects of salvianolic acids on endothelial cells against damage induced by cholestane-3beta-5alpha-6beta-triol.
Decheng REN ; Guanhua DU ; Juntian ZHANG
Chinese Medical Journal 2003;116(4):630-632
OBJECTIVETo investigate the effects of salvianolic acids on human umbilical vein endothelial cells (HUVEC) against damage induced by cholestane-3beta-5alpha-6beta-triol (chol-triol).
METHODSThe viability of HUVEC was measured by MTT method. The apoptosis of HUVEC induced by chol-triol was detected by flow cytometry and TUNEL assay. The production of malondialdehyd (MDA) in HUVEC was tested by thiobarbaturic acid (TBA) assay.
RESULTSThe viability of HUVEC treated with chol-triol 100 micro mol/L decreased by 39.8% while salvianolic acids 100 micro g/ml increased by 27.9%. The apoptotic rate of HUVEC measured by PI staining increased from 6% - 8% to 17% - 20% after chol-triol treatment for 12 h. Salvianolic acids 100 micro g/ml reduced the apoptotic rate to 10% - 14% after treatment HUVEC for 1 h prior to chol-triol treatment. In another experiment, chol-triol increased the number of TUNEL-positive cells 5 times, but salvianolic acids 10 micro g/ml and 100 micro g/ml reduced the number of TUNEL-positive cells by 36.9% and 61.2%, respectively. The production of MDA in HUVEC increased by 120.7% after chol-triol treatment for 12 h. Salvianolic acids 10 micro g/ml and 100 micro g/ml also decreased the concentration of MDA by 28.7% and 39.8%, respectively.
CONCLUSIONSalvianolic acids has protective effect on endothelial cells against damage induced by chol-triol.
Apoptosis ; drug effects ; Benzofurans ; pharmacology ; Caffeic Acids ; pharmacology ; Cell Survival ; drug effects ; Cells, Cultured ; Cholestanols ; toxicity ; Cinnamates ; pharmacology ; Depsides ; Endothelium, Vascular ; cytology ; drug effects ; Humans ; Lactates ; pharmacology ; Malondialdehyde ; metabolism
9.Protective effect of rosmarinic acid on hypoxia/reoxygenation injury in cardiomyocytes.
Xue-Li LI ; Jian-Xun LIU ; Peng LI ; Yong-Qiu ZHENG
China Journal of Chinese Materia Medica 2014;39(10):1897-1901
OBJECTIVETo study the protective effect of rosmarinic acid (Ros A) on the primary cardiomyocyte hypoxia/reoxygenation (H/R) injury.
METHODPrimary cardiomyocytes of rats were cultured in vitro to establish the H/R injury of cardiomyocytes and observe the changes in the cell viability and LDH leakage. The changes in ATP content and ROS in cardiomyocytes were measured by using chemiluminescence and fluorescent probe technique. The effects of rosmarinic acid on the apoptosis of cardiomyocytes, cleaved-caspase 3, Akt and p-Akt protein expression were further detected by flow cytometry and western blot analysis.
RESULTAccording to the experimental results, Ros A at doses of 25, 50, 100 mg x L(-1) could inhibit the decrease in H/R-induced cell viability, LDH leakage and excessive ROS generation, and maintain the ATP level in cells. Ros A at doses of 50, 100 mg x L(-1) could remarkably inhibit the H/R-induced cardiomyocyte apoptosis and down-regulate the expression of cleaved caspase-3. Moreover, Ros A at doses of 100 mg x L(-1) could significantly up-regulate the expression of p-Akt.
CONCLUSIONRos A has the significant effect in resisting the cardiomyocyte H/R injury, improve cardiomyocyte energy metabolism and reduce cell apoptosis, which is related to the activation of Akt pathway.
Adenosine Triphosphate ; metabolism ; Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Hypoxia ; drug effects ; Cell Survival ; drug effects ; Cells, Cultured ; Cinnamates ; pharmacology ; Depsides ; pharmacology ; Humans ; Hypoxia ; genetics ; metabolism ; physiopathology ; prevention & control ; Male ; Myocytes, Cardiac ; cytology ; drug effects ; metabolism ; Oxygen ; metabolism ; Plant Extracts ; pharmacology ; Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Rosmarinus ; chemistry
10.Effect of depside salt from salvia miltiorrhizae in repairing advanced glycation end products-induced late endothelial progenitor cell dysfunction and its molecular mechanism.
Qin CHEN ; Ming-Han HUANG ; Shi-Sen JIANG
Chinese Journal of Integrated Traditional and Western Medicine 2010;30(6):630-635
OBJECTIVETo investigate the effects of depside salt from salvia miltiorrhizae (DSSM) in repairing advanced glycation end products (AGE)-induced late endothelial progenitor cell (EPC) dysfunction, and its possible molecular mechanism.
METHODSMononuclear cells (MNCs) were separated using density gradient centrifugation from human umbilical cord blood, and cultured with EGM-2-MV culture fluid to late EPCs. Then the EPCs were divided into 5 groups: Group A incubated with 200 microg/mL AGE-modified bovine serum albumin (AGE-albumin) alone (A), Groups B, C and D with equal dosage of AGE-albumin plus DSSM at different dosages (0.1 microg/mL, 1 microg/mL, and 10 microg/mL), Group E with 200 microg/mL of unmodified-AGE. The late EPCs apoptosis was detected by Annexin V+/PI double-stain, angiogenic capacity was detected by ECMatrix-gel, mRNA expressions of the receptor for AGE (RAGE) and endothelial nitric oxide synthase (eNOS) were measured by reverse-transcriptase polymerase chain reaction (RT-PCR), and the protein expressions of RAGE, eNOS and protein kinase (Akt) were measured by Western blot.
RESULTSCompared with Group E, in Group A, the Annexin V+/PI- ratio and expression of RAGE in EPCs increased, the angiogenic capacity, mRNA and protein expressions of eNOS, and protein expression of Akt decreased significantly. These abnormal changes in Groups C and D were significantly smaller than those in Group A (P < 0.05 or P < 0.01). And all the indices in Group D were adjacent to those in Group E, showing insignificant difference between the two groups (P > 0.05).
CONCLUSIONSAGE could injure the function of EPCs, revealing increase of cell apoptosis and migration, deprivation of angiogenic capacity in vitro. DSSM could repair the EPCs dysfunction induced by AGE-albumin. Up-regulation of eNOS and Akt in these cells may be involved in the mechanism.
Adult ; Apoptosis ; drug effects ; Cell Movement ; drug effects ; Cells, Cultured ; Depsides ; isolation & purification ; pharmacology ; Endothelium, Vascular ; cytology ; drug effects ; metabolism ; Female ; Glycation End Products, Advanced ; antagonists & inhibitors ; pharmacology ; Humans ; Nitric Oxide Synthase Type III ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; metabolism ; Salvia miltiorrhiza ; chemistry ; Stem Cells ; drug effects ; metabolism ; physiology ; Young Adult