1.Simultaneous Non-Traumatic Perforation of the Right Hepatic Duct and Gallbladder: An Atypical Occurrence
Pankaj Kumar Garg ; Bhupendra Kumar Jain ; Satya Deo Pandey ; Vinita Rathi ; Amarendra Singh Puri
Malaysian Journal of Medical Sciences 2012;19(3):77-80
Simultaneous non-traumatic perforation of the extrahepatic bile duct and the gallbladder is an uncommon occurrence that has been infrequently reported. We describe a patient with a spontaneous perforation of both the extrahepatic bile duct and the gallbladder. A contrast-enhanced computed tomography (CECT) scan of the abdomen and endoscopic retrograde cholangiopancreatography (ERCP) demonstrated a perforation of the gallbladder and a free leak from the right hepatic duct, respectively. Endoscopic biliary drainage following a sphincterotomy and biliary stent placement led to a dramatic improvement in the patient’s general condition. He was subsequently scheduled to undergo an elective cholecystectomy. Repeat ERCP performed at 4 weeks after the initial stenting showed a normal cholangiogram and a distally migrated stent, which was there after removed. However, early stent removal led to re-perforation of hepatic duct and gallbladder. A repeat endoscopic biliary drainage did not help, and the patient developed biliary peritonitis. Surgical exploration revealed a perforation at the fundus of the gallbladder, 400 ml of biliopurulent collection and a frozen Calot’s triangle. A subtotal cholecystectomy, gall stone removal, and a thorough peritoneal lavage were undertaken. The patient improved postoperatively. The second biliary stent was removed after 4 months. This case report highlights the role of endoscopic biliary drainage in the management of an extrahepatic bile duct perforation and warns against the early removal of a biliary stent.
2.Effect of pre-treatment of alpha-ketoglutarate on cyanide-induced toxicity and alterations in various physiological variables in rodents.
Rajkumar TULSAWANI ; Deo KUMAR ; R BHATTACHARYA
Biomedical and Environmental Sciences 2007;20(1):56-63
OBJECTIVETo investigate the effects of pre-treatment of alpha-ketoglutarate (alpha-KG) on cyanide-induced lethality and changes in various physiological parameters in rodents.
METHODSThe LD50 of potassium cyanide (KCN) given orally (po), intraperitoneally (ip), subcutaneously (sc) or intravenously (iv) was determined in male mice, in the presence or absence alpha-KG given po, ip or iv. alpha-KG was administered 10, 20 or 40 min prior to KCN at 0.50, 1.0 or 2.0 g/kg by po or ip route, and at 0.10, 0.20 or 0.40 g/kg by iv route. Protection index (PI) was calculated as the ratio of LD50 of KCN in the presence of alpha-KG (protected animals) and LD50 of KCN in the absence of alpha-KG (unprotected animals). In a separate experiment, several physiological variables viz. mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), neuromuscular transmission (NMT) and rectal temperature (RT) were measured in anesthetized female rats pre-treated (-10 min) with po (2.0 g/kg) or iv (0.125 g/kg) alpha-KG and then administered sub-lethal (0.75 LD50) or lethal (2.0, 4.0 or 8.0 LD50) doses of KCN (po).
RESULTSPI of 4.52, 6.40 and 7.60 at -10 min, 3.20, 5.40 and 6.40 at -20 min, and 1.40, 3.20 and 5.40 at -40 min of po administration with a-KG was observed for 0.50, 1.0 and 2.0 g/kg doses, respectively, against KCN given by po route. When KCN was given ip, a PI of 3.38, 4.79 and 5.70 was observed for 0.50, 1.0 and 2.0 g/kg alpha-KG given ip (-10 min), respectively. A lower PI of 3.37, 2.83 and 2.38 was observed when KCN given sc was challenged by 2.0 g/kg alpha-KG given ip at -10, -20 or -40 min, respectively. Similarly, a PI of 3.37, 2.83 and 2.0 was noted when KCN given sc was antagonized by 2.0 g/kg alpha-KG given po at -10, -20 or -40 min, respectively. No appreciable protection was observed when lower doses of alpha-KG (ip or po) challenged KCN given by sc route. Pre-treatment of iv or po administration of alpha-KG did not afford any protection against KCN given po or iv route. Oral treatment of 0.75 LD50 KCN caused significant decrease in MAP and HR after 15 min, RR after 30 min and NMT after 60 min. There was no effect on RT. No reduction in MAP, HR, RR and RT was observed when rats received 2.0 or 4.0 LD50 KCN after pre-treatment of alpha-KG (po; 2.0 g/kg). However, no protection was observed on NMT. Protective efficacy of alpha-KG was not observed on MAP, HR, RR, and NMT decreased by 8.0 LD50 KCN. Decrease in MAP and NMT caused by 2.0 LD50 KCN (po) was resolved by iv administration of alpha-KG.
CONCLUSIONSCyanide antagonism by alpha-KG is best exhibited when both alpha-KG and KCN are given by po route. The protective effect of a-KG on cyanide-induced changes in several physiological parameters also indicates a promising role of alpha-KG as an alternative cyanide antidote.
Administration, Oral ; Animals ; Antidotes ; administration & dosage ; Dose-Response Relationship, Drug ; Female ; Injections, Intraperitoneal ; Injections, Intravenous ; Injections, Subcutaneous ; Ketoglutaric Acids ; administration & dosage ; Lethal Dose 50 ; Male ; Mice ; Potassium Cyanide ; poisoning ; Rats ; Rats, Wistar
3.Acute Toxicity and Cardio-Respiratory Effects of 2-Deoxy-D-Glucose: A Promising Radio Sensitiser
VIJAYARAGHAVAN R. ; KUMAR DEO ; DUBE SN ; SINGH R. ; PANDEY KS. ; BAG BC. ; KAUSHIK MP. ; SEKHAR K. ; DWARAKANATH BS. ; RAVINDRANATH T.
Biomedical and Environmental Sciences 2006;19(2):96-103
To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The LD50 of 2DG (in water)was determined in rats and mice by p.o. route and in mice by i.v. route. The effect of 2-DG (250 mg/kg, 500 mg/kg, and 1000mg/kg, i.v.) was studied on various cardio-respiratory parameters viz., mean arterial blood pressure, heart rate and respiratory rate in anaesthetised rats. The effect of 2DG (500 mg/kg, 1000 mg/kg, and 2000 mg/kg, p.o.) was also studied on various respiratory parameters viz., respiratory rate and tidal volume in conscious rats and mice using a computer program. Results The p.o. LD50 of 2DG was found to be >8000 mg/kg in mice and rats, and at this dose no death was observed. The LD50 in mice by i.v. route was found to be 8000 mg/kg. At this dose 2 out of 4 mice died and the death occurred within 6 h. A significant increase in the body weight was observed after p.o. administration of 2DG in rats at 500 mg/kg, 1000 mg/kg, and 2000 mg/kg doses. There was no significant change in the body weight at 4000 mg/kg and 8000 mg/kg by the p.o. route in rats and up to 8000 mg/kg by p.o. as well as i.v. routes in mice. Intravenous administration of 2DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg)in anaesthetised rats showed a time-dependent decrease in the mean arterial blood pressure. There was no change in the heart rate in any of the treatment groups. The tidal volume was not changed significantly by p.o administration in conscious rats, but a significant decrease in the respiratory frequency at 500 mg/kg and 1000 mg/kg doses was observed. In the mice also there was no change in the tidal volume after p.o, administration, but the respiratory frequency decreased significantly at 2000 mg/kg dose.Conclusion 2DG is a safe compound but can cause a fall in the blood pressure and a decrease in respiratory frequency at high doses.