1.Cyclic fatigue resistance of nickel-titanium files made by Gold heat treatment in simulated S-shaped root canals at different temperatures.
Journal of Peking University(Health Sciences) 2025;57(1):136-141
OBJECTIVE:
To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.
METHODS:
Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.08) were selected as the experimental group, M wire technique nickel-titanium file ProTaper Next (25 mm, tip size 25#/0.06) was selected as the control group. It was speculated that the Gold technique used in TruNatomy nickel-titanium file was R phase separation technique, which included a complete intermediate R-phase, increasing its flexibility. ProTaper Gold was a CM wire nickel-titanium file and the increased phase transformation temperature by heat treatment introduced martensite at room temperature, while it underwent gold heat treatment on the surface, generating an intermediate R phase during phase transformation, providing hyperelastic. ProTaper Next used M wire technique, M wire included austenite at room temperature, where heat mechanical processing introduced hardened martensite, which was incapable of participating phase transformation. Because of the lower elastic modulus of hardened martensite than austenite, the flexibility of the file was increased. Twenty instruments of each nickel-titanium file were submitted to the cyclic fatigue test by using a simulated canal with double curvatures at room tem-perature (24 ℃) and 65 ℃, 10 instruments of each nickel-titanium file were selected at each temperature (n=10). At the same temperature, the number of cyclic fatigue (NCF) and fragment length were analyzed by using One-Way analysis of variance at a significance level of P < 0.05. NCF and fragment length of the same nickel-titanium file at room temperature and 65 ℃ were compared by paired sample t test and the significance level was α=0.05. Fractured surfaces were analyzed by using scanning electron microscope.
RESULTS:
In double-curved canals, all the failure of the files due to cyclic fatigue was first seen in the apical curvature before the coronal curvature. At room temperature, in the apical curvature, NCF of TruNatomy was 344.4±96.6, ProTaper Gold was 175.0±56.1, ProTaper Next was 133.3±39.7, NCF of Tru Natomy was the highest (P < 0.05). In the coronal curvature, NCF of TruNatomy was 618.3± 75.3, ProTaper Gold was 327.5±111.8, ProTaper Next was 376.6±67.9, NCF of TruNatomy was also the highest (P < 0.05). There was no significant difference among the apical and coronal fragment length of the 3 nickel-titanium files (P>0.05). At 65 ℃, in the apical curvature, NCF of TruNatomy was 289.6±65.8, ProTaper Gold was 187.5±75.4, ProTaper Next was 103.0±38.5, NCF of TruNatomy was the highest (P < 0.05). In the coronal curvature, NCF of TruNatomy was 454.2±45.4, ProTaper Gold was 268.3±31.4, ProTaper Next was 283.8±31.7, NCF of TruNatomy was also the highest (P < 0.05). The apical fragment length of ProTaper Next was the highest (P < 0.05), and there was no significant difference among coronal fragment length of the 3 nickel-titanium files (P>0.05). Compared with room temperature, at 65 ℃, in the coronal curvature, NCF of TruNatomy decreased significantly (P < 0.05). The fractured surfaces of the three nickel-titanium files demonstrated typical cyclic fatigue.
CONCLUSION
Gold heat-treated nickel-titanium file had better cyclic fatigue resistance than M wire nickel-titanium file in S-shaped root canals.
Nickel/chemistry*
;
Titanium/chemistry*
;
Hot Temperature
;
Root Canal Preparation/methods*
;
Humans
;
Materials Testing
;
Gold/chemistry*
;
Dental Alloys/chemistry*
;
Stress, Mechanical
2.Evolution and development: engine-driven endodontic rotary nickel-titanium instruments.
International Journal of Oral Science 2022;14(1):12-12
Various engine-driven NiTi endodontic files have been indispensable and efficient tools in cleaning and shaping of root canals for practitioners. In this review, we introduce the relative terms and conceptions of NiTi file, including crystal phase composition, the design of the cutting part, types of separation. This review also analysis the main improvement and evolution of different generations of engine-driven nickel-titanium instruments in the past 20 years in the geometric design, manufacturing surface treatment such as electropolishing, thermal treatment, metallurgy. And the variety of motion modes of NiTi files to improve resistance to torsional failure were also discussed. Continuous advancements by the designers, provide better balance between shaping efficiency and resistance to of NiTi systems. In clinical practice an appropriate system should be selected based on the anatomy of the root canal, instrument characteristics, and operators' experience.
Dental Alloys/chemistry*
;
Dental Instruments
;
Equipment Design
;
Nickel/chemistry*
;
Root Canal Preparation
;
Titanium/chemistry*
3.Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro.
Bingran ZHAO ; ; Minie RUSTEMA-ABBING ; Henk J BUSSCHER ; Yijin REN
International Journal of Oral Science 2015;7(4):250-258
Sub-gingival anaerobic pathogens can colonize an implant surface to compromise osseointegration of dental implants once the soft tissue seal around the neck of an implant is broken. In vitro evaluations of implant materials are usually done in monoculture studies involving either tissue integration or bacterial colonization. Co-culture models, in which tissue cells and bacteria battle simultaneously for estate on an implant surface, have been demonstrated to provide a better in vitro mimic of the clinical situation. Here we aim to compare the surface coverage by U2OS osteoblasts cells prior to and after challenge by two anaerobic sub-gingival pathogens in a co-culture model on differently modified titanium (Ti), titanium-zirconium (TiZr) alloys and zirconia surfaces. Monoculture studies with either U2OS osteoblasts or bacteria were also carried out and indicated significant differences in biofilm formation between the implant materials, but interactions with U2OS osteoblasts were favourable on all materials. Adhering U2OS osteoblasts cells, however, were significantly more displaced from differently modified Ti surfaces by challenging sub-gingival pathogens than from TiZr alloys and zirconia variants. Combined with previous work employing a co-culture model consisting of human gingival fibroblasts and supra-gingival oral bacteria, results point to a different material selection to stimulate the formation of a soft tissue seal as compared to preservation of osseointegration under the unsterile conditions of the oral cavity.
Acid Etching, Dental
;
methods
;
Alloys
;
chemistry
;
Bacterial Adhesion
;
physiology
;
Bacteriological Techniques
;
Biofilms
;
Cell Adhesion
;
physiology
;
Cell Culture Techniques
;
Cell Line, Tumor
;
Cell Movement
;
physiology
;
Ceramics
;
chemistry
;
Coculture Techniques
;
Dental Alloys
;
chemistry
;
Dental Etching
;
methods
;
Dental Implants
;
microbiology
;
Dental Materials
;
chemistry
;
Dental Polishing
;
methods
;
Humans
;
Osseointegration
;
physiology
;
Osteoblasts
;
physiology
;
Porphyromonas gingivalis
;
physiology
;
Prevotella intermedia
;
physiology
;
Surface Properties
;
Titanium
;
chemistry
;
Yttrium
;
chemistry
;
Zirconium
;
chemistry
5.Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients.
Guliz AKTAS ; Erdal SAHIN ; Pekka VALLITTU ; Mutlu OZCAN ; Lippo LASSILA
International Journal of Oral Science 2013;5(4):236-241
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.
Adhesiveness
;
Ceramics
;
chemistry
;
Color
;
Dental Bonding
;
Dental Materials
;
chemistry
;
Dental Porcelain
;
chemistry
;
Dental Stress Analysis
;
instrumentation
;
Dental Veneers
;
Gold Alloys
;
chemistry
;
Humans
;
Materials Testing
;
Metal Ceramic Alloys
;
chemistry
;
Prosthesis Coloring
;
Stress, Mechanical
;
Surface Properties
;
Thermodynamics
;
Yttrium
;
chemistry
;
Zirconium
;
chemistry
6.Tooth wear against ceramic crowns in posterior region: a systematic literature review.
International Journal of Oral Science 2013;5(4):183-190
The objective of this systematic review was to assess tooth wear against ceramic crowns in posterior region in vitro and in vivo. An electronic PubMed search was conducted to identify studies on tooth wear against ceramic crowns in posterior region. The selected studies were analyzed in regard to type of crowns, natural antagonist, measuring protocol and outcome. From a yield of 1 000 titles, 43 articles were selected for full-text analysis; finally, no in vitro and only five in vivo studies met the inclusion criteria. As there is heterogeneity in design, used measuring method, ceramics and analysis-form, a meta-analysis was not possible. Results of these studies are very controversial which makes a scientifically valid comparison impossible. This review indicated that some all-ceramic crowns are as wear friendly as metal-ceramic crowns. Up to now, it has been impossible to associate tooth wear with any specific causal agent. The role of ceramic surface treatment that might be responsible for the changing in rate of tooth wear seems undetermined as yet through clinical trials. The literature reveals that studies on this topic are subject to a substantial amount of bias. Therefore, additional clinical studies, properly designed to diminish bias, are warranted.
Crowns
;
Dental Enamel
;
pathology
;
Dental Porcelain
;
chemistry
;
classification
;
Humans
;
Metal Ceramic Alloys
;
chemistry
;
Surface Properties
;
Tooth Crown
;
pathology
;
Tooth Wear
;
etiology
7.Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.
Bo CHEN ; Gang XIA ; Xin-Ming CAO ; Jue WANG ; Bi-Yao XU ; Pu HUANG ; Yue CHEN ; Qing-Wu JIANG
International Journal of Oral Science 2013;5(1):44-48
This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of <1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of <1, 1 to <3 and 3 to <6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.
Adult
;
Chromium
;
urine
;
Chromium Alloys
;
chemistry
;
Creatinine
;
urine
;
Crowns
;
Dental Porcelain
;
chemistry
;
Female
;
Humans
;
Male
;
Metal Ceramic Alloys
;
chemistry
;
Middle Aged
;
Nickel
;
urine
;
Spectrophotometry, Atomic
;
Surface Properties
;
Time Factors
8.Study of Ag-containing on casting cobalt chromium alloy on the surface structure and the cell toxicity in vitro.
Min ZHAO ; Rui-ying LIANG ; He MENG ; Yan-li XU ; Jing-dong LI ; Wen-hui WU
Chinese Journal of Stomatology 2012;47(10):626-630
OBJECTIVETo detect cobalt chromium alloy antimicrobial coating silver of the surface structure and the cell toxicity in order to provide a theoretical basis for clinical application.
METHODSPlasma spraying technique was adopted to prepare cobalt chromium alloy antimicrobial coating silver. Scanning electron microscopy, energy dispersive analysis and X-ray diffraction analysis were used to evaluate the surface properties. The methyl thiazolyl tetrazolium and flow cytometry method was adopted to test the L929 cell proliferation and the influence of the cell cycle.
RESULTSThe surface of the coating was uniform and compact, combined perfectly with substrate material. The content of the surface was mainly Ag, Cr and a small amount of Ag(2)O, Cr(2)O(3). After cobalt chromium alloy was cultured in leach liquor for 1, 2 and 3 days, the statistical result showed that there was no significant different between the three groups. The cytotoxic level of negative control group was level 0 at each time point and that of other groups was level 1 at each time point. There was no significant difference between cobalt chromium alloy and cobalt chromium alloy antimicrobial coating silver in cell toxicity (P > 0.05). There was no statistical significance of the influence on cell cycle between cobalt chromium alloy with Ag coating [the G2's rate of cell cycle was (8.23 ± 0.39)%] and cobalt chromium alloy group [the G2's rate of cell cycle was (8.70 ± 0.46)%] (P > 0.05).
CONCLUSIONSThe surface of the coating was stable and there was no significant difference between cobalt chromium alloy widely used in clinic and cobalt chromium alloy with Ag coating of the influence on proliferation of L929 cell and cell cycle, the cell compatibility of cobalt chromium with Ag coating is well.
Animals ; Cell Cycle ; drug effects ; Cell Line ; Cell Proliferation ; drug effects ; Chromium Alloys ; chemistry ; toxicity ; Dental Casting Technique ; Fibroblasts ; cytology ; drug effects ; Mice ; Microscopy, Electron, Scanning ; Silver ; chemistry ; toxicity ; Surface Properties ; X-Ray Diffraction
9.Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains.
Ya-li ZHANG ; Xiao-ping LUO ; Li ZHOU
Chinese Journal of Stomatology 2012;47(5):273-276
OBJECTIVETo study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces.
METHODSSixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure.
RESULTSFE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P < 0.05], while no significant difference was found between T group and GT group (P > 0.05).
CONCLUSIONSThe gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.
Dental Bonding ; Dental Porcelain ; chemistry ; Dental Stress Analysis ; Gold ; chemistry ; Materials Testing ; Metal Ceramic Alloys ; Microscopy, Electron, Scanning ; Surface Properties ; Titanium ; chemistry
10.Influence of masticatory fatigue on the fracture resistance of the pulpless teeth restored with quartz-fiber post-core and crown.
Er-Min NIE ; Xia-Yun CHEN ; Chun-Yuan ZHANG ; Li-Li QI ; Ying-He HUANG
International Journal of Oral Science 2012;4(4):218-220
To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from orthodontic patients were divided into two groups of 22 each. The crowns of all teeth were removed and endodontically treated and then restored with quartz-fiber post-core and full crown. Twenty-two teeth in one group were selected randomly and circularly loaded at 45° to the long axis of the teeth of 127.4 N at a 6 Hz frequency, and the other group was not delivered to cyclic loading and considered as control. Subsequently, all teeth in two groups were continually loaded to fail at 45° to the long axis of the teeth at a crosshead speed of 1 mm⋅min(-1). The mean destructive force values were (733.88±254.99) and (869.14±280.26) N for the experimental and the control group, respectively, and no statistically significant differences were found between two groups (P>0.05). Bevel fracture and horizontal fracture in the neck of root were the major fracture mode of the specimens. Under the circumstances of this study, it seems that cyclic loading does not affect the fracture strength and pattern of the quartz-fiber post-core-crown complex.
Acid Etching, Dental
;
methods
;
Adult
;
Bicuspid
;
Bite Force
;
Chromium Alloys
;
chemistry
;
Crowns
;
Dental Prosthesis Design
;
Dental Restoration Failure
;
Dental Stress Analysis
;
instrumentation
;
Humans
;
Materials Testing
;
Methacrylates
;
chemistry
;
Phosphoric Acids
;
chemistry
;
Post and Core Technique
;
instrumentation
;
Quartz
;
chemistry
;
Resin Cements
;
chemistry
;
Stress, Mechanical
;
Tooth Fractures
;
physiopathology
;
Tooth Root
;
injuries
;
Tooth, Nonvital
;
rehabilitation

Result Analysis
Print
Save
E-mail