1.Not Available.
Zheng DING ; Song ZHAO ; Xiangnan LI ; Jia ZHAO ; Dengyan ZHU ; Kai WU
Chinese Journal of Medical Genetics 2016;33(3):430-430
2. Meta analysis of clinical characteristics of urinary calculi in children
Kaihui SHEN ; Lina MA ; Dengyan WU ; Rui MA ; Qian CHANG ; Yonghong YANG
Journal of Chinese Physician 2019;21(9):1339-1344,1348
Objective:
We investigated the clinical characteristics and the most important risk factors of urinary calculi in children.
Methods:
Using Cochrane Library, PubMed, ProQuest, ELEVIER Science Direct, Embase, Springerlink, China National Knowledge Infrastructure (CNKI), and Wanfang database, we reviewed literature on clinical characteristics of urinary calculi in children from January 2003 to September 2018, and data was analyzed using STATA 14.0.
Results:
Incidence of calculi in male children was 62.1% [95%
3.Trichostatin A up-regulates coxsackievirus-adenovirus receptor (CAR) expression through inhibiting MAPK/ERK pathway to enhance the antitumor activity of H101 virus in thymic carcinoma
Zhanfeng HE ; Wei WANG ; Tianliang ZHENG ; Donglei LIU ; Yang YANG ; Dengyan ZHU ; Kai WU ; Liping WANG ; Song ZHAO
Chinese Journal of Microbiology and Immunology 2020;40(8):628-634
Objective:To investigate the expression of coxsackievirus-adenovirus receptor (CAR) in thymic carcinoma and the relationship between CAR and the antitumor activity of oncolytic adenovirus H101.Methods:The expression of CAR in thymic carcinoma tissues and cells were detected by RT-qPCR and Western blot. H101 expression and virus titers in Bcap-37, MP59 and T1889 cells after infection were detected by RT-qPCR and 50% tissue culture infectious dose (TCID 50). The proliferation activity and apoptosis rates of T1889 cells infected with H101 at different multiplicity of infection (MOI) were detected by CCK-8 and flow cytometry. CAR expression in T1889 cells treated with different concentrations of trichostatin A (TSA), a histone deacetylase inhibitor, was detected. H101 expression and virus titers in the TSA-treated and H101-infected cells were detected. Cell activity was detected by CCK-8. The phosphorylation levels of MARK and ERK1/2 and the expression of CAR at protein level in TSA-treated or TSA+ TBHQ (ERK activator) treated cells were detected. Results:CAR expression at both mRNA and protein levels were significantly lower in thymic carcinoma tissues than in adjacent normal tissues ( P<0.01), and lower in MP59 and T1889 cells than in thymic epithelial cells (TEC) and Bcap-37 cells ( P<0.01). H101 expression in MP59 and T1889 cells and the titers of H101 in culture supernatants were significantly lower than those in Bcap-37 cells ( P<0.01). Compared with Bcap-37 cell, the activity of MP59 and T1889 cells was significantly increased and the apoptosis rates were significantly decreased 48 h after H101 infection ( P<0.01). The expression of CAR at both mRNA and protein levels in T1889 cells treated with different concentrations of TSA increased in a dose-dependent manner. When T1889 cells were treated with 0.25 μmol/L of TSA, the expression of H101 at mRNA level and H101 titers were significantly increased ( P<0.05); the phosphorylation levels of MAPK and ERK1/2 proteins were continuously decreased; the expression of CAR was continuously increased. Compared with the TSA treatment group, the expression of CAR at protein level in the TSA+ TBHQ treatment group decreased significantly ( P<0.01), and the p-ERK1/2/ERK1/2 ratio increased significantly ( P<0.01). Conclusions:TSA could up-regulate CAR expression in thymic carcinoma by inhibiting the MARK/ERK1/2 pathway, thereby enhancing the antitumor activity of H101.