1.Electrophysiological characteristics of central neuronal dendrites and roles of dendritic back-propagating action potentials in modifications of synaptic plasticity.
Jian-Tian QIAO ; Zhong-Sheng HAN ; Jin-Shun QI
Acta Physiologica Sinica 2008;60(2):293-299
For expressing the condolences on the passing away of Dr. Hsiang-Tung Chang, one of the distinguished members of the Chinese Academia of Sciences, the pioneer studies on cortical dendritic potentials that Dr. Chang carried out in the 1950s and the prosperous progresses since then, especially, concerning the modifications of synaptic plasticity by the dendritic back-propagating action potentials were briefly reviewed.
Action Potentials
;
Dendrites
;
physiology
;
Humans
;
Neuronal Plasticity
2.Sixty years after Hsiang-Tung Chang's presentation on dendrite at the Cold Spring Harbor Symposium.
Acta Physiologica Sinica 2012;64(5):499-503
Sixty years elapsed since Chang (Hsiang-Tung Chang, Xiang-Tong Zhang) presented his seminal report "Cortical neurons with particular reference to the apical dendrite" at the Cold Spring Harbor Symposium. Thanks to the development of elaborated techniques through the 6 decades, our understanding of the dendrite has been pushed forward greatly: the backward and forward conductions during excitation, sodium and calcium conductances, chemical excitation by uncaging glutamate at a dimension of micrometer, and the quantitative study of chemical organization of postsynaptic density (PSD), etc. Though the progression is great, there are still tough problems in dendritic research, especially the integration through dendritic spine.
Calcium Signaling
;
Dendrites
;
physiology
;
Glutamic Acid
;
metabolism
4.Dendritic Morphology Affects the Velocity and Amplitude of Back-propagating Action Potentials.
Wu TIAN ; Luxin PENG ; Mengdi ZHAO ; Louis TAO ; Peng ZOU ; Yan ZHANG
Neuroscience Bulletin 2022;38(11):1330-1346
The back-propagating action potential (bpAP) is crucial for neuronal signal integration and synaptic plasticity in dendritic trees. Its properties (velocity and amplitude) can be affected by dendritic morphology. Due to limited spatial resolution, it has been difficult to explore the specific propagation process of bpAPs along dendrites and examine the influence of dendritic morphology, such as the dendrite diameter and branching pattern, using patch-clamp recording. By taking advantage of Optopatch, an all-optical electrophysiological method, we made detailed recordings of the real-time propagation of bpAPs in dendritic trees. We found that the velocity of bpAPs was not uniform in a single dendrite, and the bpAP velocity differed among distinct dendrites of the same neuron. The velocity of a bpAP was positively correlated with the diameter of the dendrite on which it propagated. In addition, when bpAPs passed through a dendritic branch point, their velocity decreased significantly. Similar to velocity, the amplitude of bpAPs was also positively correlated with dendritic diameter, and the attenuation patterns of bpAPs differed among different dendrites. Simulation results from neuron models with different dendritic morphology corresponded well with the experimental results. These findings indicate that the dendritic diameter and branching pattern significantly influence the properties of bpAPs. The diversity among the bpAPs recorded in different neurons was mainly due to differences in dendritic morphology. These results may inspire the construction of neuronal models to predict the propagation of bpAPs in dendrites with enormous variation in morphology, to further illuminate the role of bpAPs in neuronal communication.
Action Potentials/physiology*
;
Dendrites/physiology*
;
Neurons/physiology*
;
Neuronal Plasticity
;
Pyramidal Cells/physiology*
5.Excitatory postsynaptic potential evoked by stimulation of the ventrolateral region of the cerebellum in crucian carp Mauthner cell.
Ying-Cai ZHANG ; Shu-Hua ZHANG ; Xiao-Yi LI ; Xue-Hong TONG ; Fen YU ; Mao-Xian ZHANG
Acta Physiologica Sinica 2003;55(4):459-463
In the present experiments, the characteristics of the electrical responses to stimulation of the cerebellum in crucian carp Mauthner cell were explored with microeletrode intracellular recording technique. A composite excitatory postsynaptic potential (cerebellum-evoked EPSP) could be induced from the soma, the ventral dendrite and the proximal end of the lateral dendrite in crucian carp Mauthner cell (M-cell) on either side by stimulation of the ventrolateral region of the cerebellum. The cerebellum-evoked EPSP presented characteristics of relatively short latency (0.63+/-0.09 ms), longer duration (5.49+/-1.13 ms), graded amplitude and dependence on stimulation frequency. Stimulation of the cerebellum with higher intensity always activated the M-cell orthodromically. Multiple intracellular recordings showed that the cerebellum-evoked EPSP originated in the distal end of the ventral dendrite. The results suggest that the cerebellum-M-cell pathway is probably composed of a group of neuron chains with different numbers of synaptic relays projecting to the distal end of the ventral dendrite in order of length of the chains.
Animals
;
Carps
;
physiology
;
Cerebellum
;
physiology
;
Dendrites
;
physiology
;
Electric Stimulation
;
Excitatory Postsynaptic Potentials
;
physiology
;
Neurons
;
physiology
;
Synapses
;
physiology
;
Synaptic Transmission
;
physiology
6.CREB-regulated transcription coactivator 1: important roles in neurodegenerative disorders.
Zhan-Cheng XUE ; Chuang WANG ; Qin-Wen WANG ; Jun-Fang ZHANG
Acta Physiologica Sinica 2015;67(2):155-162
The cAMP-responsive element binding protein (CREB)-regulated transcription coactivator, CRTC (also known as transducer of regulated CREB, TORC), is identified as a potent modulator of cAMP response element (CRE)-driven gene transcription. The CRTC family consists of three members (CRTC1-3), among which the CRTC1 shows the highest expression in the brain. Several studies have demonstrated that the CRTC1 plays critical roles in neuronal dendritic growth, long-term synaptic plasticity, memory consolidation and reconsolidation etc., whereas dysfunction of CRTC1 is mainly involved in neurodegenerative disorders. In light of these findings, we aim to review recent research reports that indicate the CRTC1 dysfunction and its underlying mechanisms in the neurodegenerative disorders.
Brain
;
physiology
;
Dendrites
;
physiology
;
Humans
;
Neurodegenerative Diseases
;
physiopathology
;
Neuronal Plasticity
;
Transcription Factors
;
physiology
7.Electrical excitability of the apical dendrites of mammalian cortical pyramidal neurons.
Acta Physiologica Sinica 2012;64(6):707-712
The electrical excitability of the dendrites of the cortical neurons was first studied on the apical dendrites of the pyramidal neurons. Professor ZHANG Xiang-Tong (H-T Chang) made important contributions in the fifties of last century on this topic. Through numerous studies later on, it has been established that the electrical excitability of dendrites of different types of neurons, even different dendrites in the same neuron is different. For the apical dendrites of the cortical pyramidal neurons, neither a single nor a train of repetitive action potentials with constant frequency can reach its terminal portion. However, some of the burst repetitive responses with non-constant frequency of the apical dendrite elicited by direct current injected into the soma may reach the terminal portion. This may be due to: (1) the calcium ion concentration in the apical dendrite is increased by the burst activities, which, in turn, increases the electrical excitability of the apical dendrite and /or (2) some retrograde collaterals of axon of the activated soma reach the apical dendrite and release neurotransmitter glutamate, which changes the properties of the voltage-gated ion channels in the apical dendrite. Low electrical excitability of the apical dendrites seems to be essential for the processing of numerous income signals to the terminal portion of the apical dendrites.
Action Potentials
;
Animals
;
Dendrites
;
physiology
;
Electrophysiological Phenomena
;
Ion Channels
;
physiology
;
Pyramidal Cells
;
physiology
;
Synaptic Transmission
8.Temporal lobe epilepsy and adult hippocampal neurogenesis.
Liying CHEN ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):22-29
Temporal lobe epilepsy (TLE) is a common and severe neurological disorder which is often intractable. It can not only damage the normal structure and function of hippocampus, but also affect the neurogenesis in dentate gyrus (DG). It is well documented from researches on the animal models of TLE that after a latent period of several days, prolonged seizure activity leads to a dramatic increase in mitotic activity in the hippocampal DG. However, cell proliferation returns to baseline levels within 3-4 weeks after status epilepticus (SE). Meanwhile, there are two major abnormalities of DG neurogenesis, including the formation of hilar basal dendrites and the ectopic migration of newborn granule cells into the polymorphic cell layer, which may affect epileptogenesis and seizure onset. However, the specific contribution of these abnormalities to seizures is still unknown. In other words, whether they are anti-epileptic or pro-epileptic is still under heated discussion. This article systematically reviews current knowledge on neurogenesis and epilepsy based on the results of studies in recent years and discusses the possible roles of neurogenesis in epileptogenesis and pathologic mechanisms, so as to provide information for the potential application of neurogenesis as a new clinical therapeutic target for temporal lobe epilepsy.
Animals
;
Brain
;
Cell Movement
;
physiology
;
Cell Proliferation
;
physiology
;
Dendrites
;
pathology
;
Dentate Gyrus
;
growth & development
;
pathology
;
Epilepsy, Temporal Lobe
;
etiology
;
pathology
;
physiopathology
;
Hippocampus
;
growth & development
;
pathology
;
Humans
;
Mitosis
;
physiology
;
Neurogenesis
;
physiology
;
Neurons
;
pathology
;
Seizures
;
etiology
;
physiopathology
;
Status Epilepticus
;
physiopathology
9.Nicotinamide mononucleotide adenylyltransferase 1 gene NMNAT1 regulates neuronal dendrite and axon morphogenesis in vitro.
Hong ZHAO ; Jing-Yu ZHANG ; Zi-Chao YANG ; Ming LIU ; Bao-Zhi GANG ; Qing-Jie ZHAO
Chinese Medical Journal 2011;124(20):3373-3377
BACKGROUNDWallerian degeneration is a self-destructive process of axonal degeneration that occurs after an axonal injury or during neurodegenerative disorders such as Parkinson's or Alzheimer's disease. Recent studies have found that the activity of the nicotinamide adenine dinucleotide (NAD) synthase enzyme, nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) can affect the rate of Wallerian degeneration in mice and drosophila. NMNAT1 protects neurons and axons from degeneration. However, the role of NMNAT1 in neurons of central nervous system is still not well understood.
METHODSWe set up the culture of primary mouse neurons in vitro and manipulated the expression level of NMNAT1 by RNA interference and gene overexpression methods. Using electroporation transfection we can up-regulate or down-regulate NMNAT1 in cultured mouse dendrites and axons and study the neuronal morphogenesis by immunocytochemistry. In all functional assays, FK-866 (CAS 658084-64-1), a highly specific non-competitive inhibitor of nicotinamide phosphoribosyltransferase was used as a pharmacological and positive control.
RESULTSOur results showed that knocking down NMNAT1 by RNA interference led to a marked decrease in dendrite outgrowth and branching and a significant decrease in axon growth and branching in developing cortical neurons in vitro.
CONCLUSIONSThese findings reveal a novel role for NMNAT1 in the morphogenesis of developing cortical neurons, which indicate that the loss of function of NMNAT1 may contribute to different neurodegenerative disorders in central nervous system.
Animals ; Axons ; metabolism ; Blotting, Western ; Cells, Cultured ; Dendrites ; metabolism ; Immunohistochemistry ; Mice ; Morphogenesis ; genetics ; physiology ; Neurons ; cytology ; metabolism ; Nicotinamide-Nucleotide Adenylyltransferase ; genetics ; metabolism
10.MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2.
Yunjia ZHANG ; Mengmeng CHEN ; Zilong QIU ; Keping HU ; Warren MCGEE ; Xiaoping CHEN ; Jianghong LIU ; Li ZHU ; Jane Y WU
Protein & Cell 2016;7(7):489-500
MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.
Animals
;
Dendrites
;
genetics
;
metabolism
;
Dendritic Spines
;
genetics
;
metabolism
;
Down-Regulation
;
physiology
;
Methyl-CpG-Binding Protein 2
;
biosynthesis
;
genetics
;
MicroRNAs
;
genetics
;
metabolism
;
Rats