1.Comparative Behavioral Correlation of High and Low-Performing Mice in the Forced Swim Test
Schley VALENCIA ; Edson Luck GONZALES ; Keremkleroo Jym ADIL ; Se Jin JEON ; Kyoung Ja KWON ; Kyu Suk CHO ; Chan Young SHIN
Biomolecules & Therapeutics 2019;27(4):349-356
Behavioral analysis in mice provided important contributions in helping understand and treat numerous neurobehavioral and neuropsychiatric disorders. The behavioral performance of animals and humans is widely different among individuals but the neurobehavioral mechanism of the innate difference is seldom investigated. Many neurologic conditions share comorbid symptoms that may have common pathophysiology and therapeutic strategy. The forced swim test (FST) has been commonly used to evaluate the “antidepressant” properties of drugs yet the individual difference analysis of this test was left scantly investigated along with the possible connection among other behavioral domains. This study conducted an FST-screening in outbred CD-1 male mice and segregated them into three groups: high performers (HP) or the active swimmers, middle performers (MP), and low performers (LP) or floaters. After which, a series of behavioral experiments were performed to measure their behavioral responses in the open field, elevated plus maze, Y maze, three-chamber social assay, novel object recognition, delay discounting task, and cliff avoidance reaction. The behavioral tests battery revealed that the three groups displayed seemingly correlated differences in locomotor activity and novel object recognition but not in other behaviors. This study suggests that the HP group in FST has higher locomotor activity and novelty-seeking tendencies compared to the other groups. These results may have important implications in creating behavior database in animal models that could be used for predicting interconnections of various behavioral domains, which eventually helps to understand the neurobiological mechanism controlling the behaviors in individual subjects.
Animals
;
Behavior Rating Scale
;
Delay Discounting
;
Humans
;
Individuality
;
Male
;
Mice
;
Models, Animal
;
Motor Activity
2.Separate Neural Networks for Gains and Losses in Intertemporal Choice.
Yang-Yang ZHANG ; Lijuan XU ; Zhu-Yuan LIANG ; Kun WANG ; Bing HOU ; Yuan ZHOU ; Shu LI ; Tianzi JIANG
Neuroscience Bulletin 2018;34(5):725-735
An important and unresolved question is how human brain regions process information and interact with each other in intertemporal choice related to gains and losses. Using psychophysiological interaction and dynamic causal modeling analyses, we investigated the functional interactions between regions involved in the decision-making process while participants performed temporal discounting tasks in both the gains and losses domains. We found two distinct intrinsic valuation systems underlying temporal discounting in the gains and losses domains: gains were specifically evaluated in the medial regions, including the medial prefrontal and orbitofrontal cortices, and losses were evaluated in the lateral dorsolateral prefrontal cortex. In addition, immediate reward or punishment was found to modulate the functional interactions between the dorsolateral prefrontal cortex and distinct regions in both the gains and losses domains: in the gains domain, the mesolimbic regions; in the losses domain, the medial prefrontal cortex, anterior cingulate cortex, and insula. These findings suggest that intertemporal choice of gains and losses might involve distinct valuation systems, and more importantly, separate neural interactions may implement the intertemporal choices of gains and losses. These findings may provide a new biological perspective for understanding the neural mechanisms underlying intertemporal choice of gains and losses.
Adult
;
Brain
;
diagnostic imaging
;
physiology
;
Brain Mapping
;
Delay Discounting
;
physiology
;
Female
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Neural Pathways
;
diagnostic imaging
;
physiology
;
Neuropsychological Tests
;
Psychophysics
;
Reward
;
Young Adult