1.Promoting fucoxanthin accumulation in Phaeodactylum tricornutum by multiple nitrogen supplementation and blue light enhancement.
Zexiong YANG ; Runqing YANG ; Defei ZHU ; Dong WEI
Chinese Journal of Biotechnology 2023;39(11):4580-4592
The aim of this study was to promote fucoxanthin accumulation in Phaeodactylum tricornutum by photo-fermentation through optimizing the mode of multiple nitrogen supplementation and blue light enhancement. The results showed that the mixed nitrogen source (tryptone: urea=1:1, N mol/N mol; total nitrogen concentration at 0.02 mol/L) added to the culture system by six times was the best mode in shake flasks. Two-phase culture with light adjustment was then carried out in 5 L photo-fermenter with an enhanced blue light (R: G: B=67.1:16.7:16.3) in the second phase, leading to improved cell density (1.12×108 cells/mL), biomass productivity (330 mg/(d·L)), fucoxanthin content (19.62 mg/g), titer (69.71 mg/L) and productivity (6.97 mg/(d·L)). Compared with one-phase culture under red/blue (R: G: B=70.9:18.3:10.9) light and six-times nitrogen supplementation, the fucoxanthin content was significantly increased by 7.68% (P < 0.05) but the productivity did not change significantly (P > 0.05). Compared with one-phase culture under red/blue (R: G: B=70.9:18.3:10.9) light and one-time nitrogen supplementation, the content and productivity of fucoxanthin were significantly increased by 45.98% and 48.30% (P < 0.05), respectively. This study developed a two-phase culture mode with multiple nitrogen supplementation and blue light enhancement, which effectively promoted the accumulation of fucoxanthin and improved the efficiency of nitrogen source utilization, thus providing a new approach for fucoxanthin accumulation in P. tricornutum by photo-fermentation.
Nitrogen
;
Light
;
Xanthophylls
;
Diatoms
;
Dietary Supplements
2.Enhancing fucoxanthin production in Phaeodactylum tricornutum by photo-fermentation.
Defei ZHU ; Runqing YANG ; Dong WEI
Chinese Journal of Biotechnology 2023;39(3):1070-1082
The aim of this study was to develop a technical system for high-efficient production of fucoxanthin by photo-fermentation of Phaeodactylum tricornutum. In a 5 L photo-fermentation tank, the effects of initial light intensity, nitrogen source and concentration as well as light quality on biomass concentration and fucoxanthin accumulation in P. tricornutum were investigated systematically under mixotrophic condition. The results showed that the biomass concentration, fucoxanthin content and productivity reached the highest level of 3.80 g/L, 13.44 mg/g and 4.70 mg/(L·d) under the optimal conditions of initial light intensity of 100 μmol/(m2·s), 0.02 mol TN/L of tryptone: urea (1:1, N mol/N mol) as mixed nitrogen source, and a mixed red/blue (R: B=6:1) light, 1.41, 1.33 and 2.05-fold higher than that before optimization, respectively. This study developed a key technology for enhancing the production of fucoxanthin by photo-fermentation of P. tricornutum, facilitating the development of marine natural products.
Fermentation
;
Xanthophylls
;
Light
;
Diatoms
;
Nitrogen