1.Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation
Seul Bi LEE ; Youngtaek HONG ; Yeon Jin CHO ; Dawun JEONG ; Jina LEE ; Soon Ho YOON ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON
Korean Journal of Radiology 2023;24(4):294-304
Objective:
We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods.
Materials and Methods:
We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume.
Results:
The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%–91.27%] vs. [standardized, 93.16%–96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%–91.37% vs. standardized, 1.99%–4.41%). In all protocols, CCCs improved after image conversion (original, -0.006–0.964 vs. standardized, 0.990–0.998).
Conclusion
Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.
2.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
3.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
4.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
5.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.