1.Recent advances on microRNA-137 methylation in tumors
Journal of Chinese Physician 2018;20(3):471-474
The aberrant expression of MicroRNA-137 (miR-137) is correlated with different tumors closely,miR-137 promoter methylation considered as one of the most important mechanisms through which miR-137 expression can be regulated.The degree of promoter methylation of miR-137 was significantly increased in tumors,but the frequencies varied.In addition,it correlated with different clinical and pathological characteristics in tumors.Furthermore,miR-137 promoter methylation indicated poor prognosis.miR-137 promoter methylation promoted the initiation and progression of tumors,it was of potential to be a biomarker and reversed the methylation status of miR-137 represented a novel strategy of cancer treatment.
2.Evaluation of Expression and Prognostic Significance of FUNDC1 Protein in Non-small Cell Lung Cancer Based on TCGA Database and Clinicopathology
Yuxiu WANG ; Yu CHEN ; Daohui GONG ; Liuzhao CAO ; Wenjing XU ; Xingxiang XU ; Lingfeng MIN
Cancer Research on Prevention and Treatment 2022;49(4):322-327
Objective To evaluate the expression of FUNDC1 and its clinical significance in non-small cell lung cancer. Methods We used TCGA database to analyze the difference of mitochondrial receptors (DRP1, BNIP3, FUNDC1, NIX, RHEB, LC3, OPA1 and MFN1) expression between normal and NSCLC tissues, as well as its effect on the prognosis of NSCLC patients. Immunohistochemistry was used to detect FUNDC1 expression. The correlations between FUNDC1 expression and clinicopathological characteristics, prognosis were evaluated by SPSS 22.0 statistical software. Results FUNDC1 expression was increased in NSCLC tissues, compared with normal tissues. FUNDC1 expression was related to the degree of differentiation and lymph node metastasis, but not to gender, age, pathological type, distant metastasis or TNM classification. The Cox regression analysis showed that FUNDC1 protein expression, lymph node metastasis, differentiation degree were independent prognostic factors of NSCLC. Increased FUNDC1 expression was related to decreased OS and PFS (
3.Construction of glucosamine/DNA composite nanomaterials and its effect on function of Raw264.7 cells
Yuhang XU ; Yue CHEN ; Qing XIANG ; Shuoxin ZHANG ; Daohui GONG ; Di WU ; Guansong WANG ; Hang QIAN
Journal of Army Medical University 2024;46(13):1494-1501
Objective To construct a new type of glucosamine/DNA composite nanostructure(NTGlcN)assembled without magnesium,verify whether or not glucosamine can mediate the assembly of DNA nanotubes(NT)and assess its effect on the function of Raw264.7 cells.Methods Utilizing the gradient annealing method with 3 DNA single strands Y1,Y2,and Y3,glucosamine(GlcN)was employed to mediate the assembly of DNA NT,resulting in the formation of glucosamine/DNA composite nanostructures.Atomic force microscopy(AFM)was used to observe the surface structure of the nanomaterial and dynamic light scattering(DLS)was used to measure its size.RAW264.7 cells were used in cell experiments.The cytotoxicity of GlcN and NTGlcN was assessed using CCK-8 assay.Flow cytometry and laser confocal microscopy were employed to investigate the cellular uptake efficiency of the nanostructures.The effects of NTGlcN and NTMg(Mg2+-assembled of DNA NT)on the expression levels of inflammatory cytokines(IL-1β,IL-6)in macrophages induced by lipopolysaccharides(LPS)were evaluated using RT-qPCR.Results GlcN successfully mediated the synthesis of NTGlcN,which exhibited good stability.AFM characterization results revealed that NTGlcN formed tubular particles that were uniformly distributed on the surface of mica.DLS measurements indicated that the diameter of NTGlcN was approximately 15.26±3.86 nm.Cell experiments demonstrated that,compared to NTMg,macrophages exhibited a higher cellular uptake efficiency for NTGlcN,with a higher cell survival rate following treatment with NTGlcN(P<0.05).After NTGlcN treatment,the expression of inflammatory cytokines in LPS-induced macrophages was reduced(P<0.05).Conclusion The glucosamine/DNA composite nanostructures have been successfully developed,possessing excellent stability,biocompatibility and cell uptake efficiency.NTGlcN is capable of reducing the cytotoxicity of GlcN and can suppress cellular inflammatory responses by decreasing the expression of inflammatory cytokines in RAW264.7 cells.