1.Flavonoids from whole plants of Lagopsis supina.
Jing ZHANG ; Dao-ran PANG ; Zheng HUANG ; Hui-xia HUO ; Yue-ting LI ; Jiao ZHENG ; Qian ZHANG ; Yun-fang ZHAO ; Peng-fei TU ; Jun LI
China Journal of Chinese Materia Medica 2015;40(16):3224-3228
The flavonoids were investigated from the whole plants of Lagopsis supina. The compounds were isolated and purified by various column chromatography, and their structures were identified by physiochemical properties and spectroscopic data. Two flavones were isolated from the CH2Cl2 layer of Lagopsis supina extract and identified as genkwanin (1) and 5-hydroxy-7,4'-dimethoxyflavone (2), respectively. Ten flavonoid glycosides were isolated from the water layer of Lagopsis supina and elucidated as kaempferol-3-O-6" (3-hydroxy-3-methylglutaryl) -β-D-glucoside (3), quercetin-3-O-6"-(3-hydroxy-3-methylglutaryl) -β-D-glucoside (4), quercetin-3-O-β-D-glucoside(5), kaempferol-3-Of3-D-glucoside ( 6), isorhamnetin-3-O-/-D-glycopyranoside (7), apigenin-7-O-6-D-glucoside (8), luteolin-7-O-β-D-glucoside (9), chrysoeriol-7-O-β-D-glucoside (10), rutin (11 ), and kaempferol-3-β-(6"-p-coumaroyl) -β-D-glucoside (tiliroside, 12). Compounds 3 and 4 were firstly isolated from Lamiaceae family, and compounds 1-12 were isolated from the plants of Lagopsis genus for the first time.
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
Flavonoids
;
chemistry
;
isolation & purification
;
Lamiaceae
;
chemistry
;
Molecular Structure
;
Spectrometry, Mass, Electrospray Ionization
2.Chemical constituents from the fruits of Vitex negundo var. cannabifolia and their biological activities in vitro.
Yue-Ting LI ; Dao-Ran PANG ; Zhi-Xiang ZHU ; Hui-Xia HUO ; Yi REN ; Zhi-Tian PENG ; Jiao ZHENG ; Yun-Fang ZHAO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2016;41(22):4197-4203
Chemical constituents from the fruits of Vitex negundo var. cannabifolia and their nitric oxide (NO) inhibitory and cytotoxic activities were investigated. The compounds were isolated and purified by various column chromatography, and their structures were identified by physiochemical properties and spectroscopic data. Thirteen lignans and six phenolic compounds were isolated from the CH2Cl2 extract of the fruits of V. negundo var. cannabifolia, respectively. Their structures were elucidated as 6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3,4-dihydro-2-naphthaldehyde (1), vitedoin A (2), vitexdoin F (3), detetrahydroconidendrin (4), vitexdoin E (5), 4-oxosesamin (6), L-sesamin (7), (+)-beechenol (8), ligballinol (9), 2-(4-hydroxyphenyl)-6-(3-methoxy-4-hydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (10), (-)-pinoresinol (11), balanophonin (12), thero-guaiacylglycerol-β-coniferyl aldehyde ether (13), trans-p-coumaryl aldehyde (14), coniferyl aldehyde (15), 5,7-dihydroxychromone (16), trans-3,5-dimethoxy-4-hydroxy-cinnamic aldehyde (17), frambinone (18), and alternariol 4-methyl ether (19). Compounds 8-10,14,18,19 were firstly isolated from Verbenaceae family, compound 13 was obtained from Vitex species, and 6,7,12,15-17 from V. negundo var. cannabifolia for the first time, respectively. The isolated compounds were evaluated for their anti-inflammatory and cytotoxic effects in vitro. Eight compounds (3,5,7,10,11,14,15,17) showed inhibition against NO production in LPS-stimulated RAW 267.4 cells (IC₅₀ in the range of 7.8-81.1 μmol•L⁻¹) and four compounds (1-4) showed cytotoxicity on HepG-2 cells (IC₅₀ in the range of 5.2-24.2 μmol•L⁻¹).
3.Anti-tumor Effect of Draconis Sanguis Petroleum Ether Fraction on Human Gastric Cancer HGC-27 and MGC-803 Cells
Hui-ming HUANG ; Ying-ying TIAN ; Dao-ran PANG ; Ya-xin LIU ; Li-shan OUYANG ; Peng-fei TU ; Jun LI ; Zhong-dong HU
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(1):85-91
ObjectiveTo investigate the effect of Draconis Sanguis petroleum ether fraction (DSPEF) on the proliferation, apoptosis, migration, and autophagy of human gastric cancer HGC-27 and MGC-803 cells, and preliminarily elucidate its molecular mechanism. MethodCell counting kit-8 (CCK-8) assay was used to detect the effect of DSPEF at different concentrations (0, 20, 40, 60, 80 mg·L-1) on the proliferation of HGC-27 and MGC-803 cells after 24, 48, 72 h. Hoechst staining and flow cytometry were used to explore the effects of DSPEF at different concentrations on the apoptosis and apoptosis rate of HGC-27 and MGC-803 cells after 48 h treatment, respectively. The wound healing assay and acridine orange staining were used to investigate the effects of DSPEF on the migration and autophagy of HGC-27 and MGC-803 cells, respectively. Western blot was used to detect the expression levels of signaling pathway-related proteins in HGC-27 and MGC-803 cells treated with DSPEF for 48 h. ResultCompared with the control group, DSPEF(30 mg·L-1) inhibited the proliferation and migration of HGC-27 and MGC-803 cells in a concentration- and time-dependent manner (P<0.05), and induced the apoptosis (P<0.01) and autophagy of HGC-27 and MGC-803 cells. DSPEF (60 mg·L-1) down-regulated the protein levels of phosphorylated mammalian target of rapamycin (p-mTOR) (P<0.05, P<0.01) and down-regulated phospho-signal transducer and activator of transcription 3 (p-STAT3) in HGC-27 and MGC-803 cells (P<0.01), suggesting that DSPEF presumedly inhibited the proliferation and migration of human gastric cancer HGC-27 and MGC-803 cells and induced their apoptosis and autophagy by inhibiting the mTOR/STAT3 signaling pathway. ConclusionThe down-regulation of the mTOR/STAT3 signaling pathway may be involved in the anti-gastric cancer effect of DSPEF. This study is expected to provide a reference for the investigation of the anti-tumor effect of Draconis Sanguis.
4.Screening combination ratio and exploring mechanism of Momordicae Semen and Epimedii Folium.
Yue-Yi KAN ; Ya-Jie WANG ; Jun LI ; Dao-Ran PANG ; Qing YANG ; Qi LI ; Yu-Jie LI ; Xiao-Gang WENG ; Ying CHEN ; Wei-Yan CAI ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2020;45(2):374-382
The aim of this paper was to obtain low toxicity and high efficiency anti-tumor Chinese medicine through screening the combination ratios of Momordicae Semen and Epimedii Folium, and to explore the anti-tumor mechanism of the combination of two drugs by observing their effect on apoptosis-related proteins in cancer cells. Methyl thiazolyl tetrazolium(MTT) assay was used to observe the effect of drug combination on the proliferation of tumor cells from different tissue sources. The effects of the combination of the two drugs on tumor cells were analyzed by Compusyn software. Plate cloning assay was used to observe the effect of combination of these two drugs on the proliferation of A549 cells in vitro. The expression of reactive oxygen species(ROS) and apoptotic proteins p53, Bcl-2 and Bax were compared by using ROS kit and Western blot. Lewis lung cancer model was used to observe the anti-tumor effect of drugs in vivo. The results showed that the anti-tumor effect of their ethanol extract was more significant than that of water extract, and the anti-proliferation effect was strongest when the ratio was 1∶1(P<0.05). Compusyn analysis showed that the combination of the two drugs had synergistic effect. Further studies showed that after combined use, the number of clonogen formation in A549 cells was significantly reduced(P<0.01); ROS production was increased; the expression of apoptosis-related protein p53 was up-regulated, and the ratio of Bcl-2/Bax was decreased. In vivo animal study showed that the tumor inhibition rate was 53.06%(P<0.05) in the high dose group. As compared with the single use of the two drugs, the combination of the two drugs had more significant anti-proliferative effect on tumors, and the optimum ratio was 1∶1. The combination of the two drugs at a ratio of 1∶1 inhibited the proliferation of various tumor cells, and had no significant effect on normal liver cells LO2 when compared with other ratios. Therefore, it can be preliminarily inferred that the combination of the two drugs may have the effect of synergism and detoxification. Further studies showed that the combination of the two drugs can significantly inhibit the proliferation of A549 cells, and its mechanism may be related to the activation of endogenous apoptotic pathway. In vivo experiments also showed that the tumor inhibition rate increased with the increase of drug concentration.
A549 Cells
;
Animals
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Drugs, Chinese Herbal/pharmacology*
;
Epimedium/chemistry*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Momordica/chemistry*
;
Neoplasms, Experimental/drug therapy*
;
Plant Leaves/chemistry*
5.Identification of active components in Longxue Tongluo Capsules against ischemic brain injury based on component-activity relationship.
Jing SUN ; Xiao-Nan CHEN ; Jia-Ni LIU ; Peng-Wei GUAN ; Chao-Chao WANG ; Bo PAN ; Dao-Ran PANG ; Shan-Shan LI ; Jiao ZHENG ; Wen-Zhe HUANG ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2019;44(1):150-157
Ten fractions(A-J) were prepared by separation of Longxue Tongluo Capsules(LTC) by using silica gel column chromatography and orthogonal experimental design,showing similar chemical profiles with different abundances of peaks.These ten samples were assessed with UHPLC-QE OrbitrapHRMS for 97 common peaks.For the pharmacological activity experiment,three kinds of in vitro cell models including lipopolysaccharide(LPS)-induced BV-2 microglial cells NO release model,oxygen-glucose deprivation/reoxygenation(OGD/R)-treated HUVEC vascular endothelial cells injury model,and OGD/R-treated PC-12 nerve cells injury model were employed to evaluated the bioactivity of each fraction.Based on the contribution of each identified component,grey relation analysis and partial least squares(PLS) analysis were performed to establish component-activity relationship of LTC,identify the potential active components.After that,validation of the potential active components in LTC was carried out by using the same models.The results indicated that 4 phenolic compounds including 7,4'-dihydroxyhomoisoflavanone,loureirin C,4,4'-dihydroxy-2,6-dimethoxydihydrochalcone,and homoisosocotrin-4'-ol,might be the active components for anti-neuroinflammation effect;five phenolic compounds such as 3,5,7,4'-tetrahydroxyhomoisoflavanone,loureirin D,7,4'-dihydroxyhomoisoflavane,and 5,7-dihydroxy-4'-methoxy-8-methyflavane,might have positive effects on the vascular endothelial injury;three phenolic compounds including 5,7,4'-trihydroxyflavanone,7,4'-dihydroxy-5-methoxyhomoisoflavane,and loureirin D,might be the active components in LTC against neuronal injury.
Brain Ischemia
;
drug therapy
;
Capsules
;
Cell Line
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucose
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Microglia
;
drug effects
;
Oxygen
6.LC-MS guided isolation of two anti-inflammatory cyclic dihydrochalcane trimers from Chinese dragon's blood.
Dao-Ran PANG ; Shan-Shan LI ; Xiao-Nan CHEN ; Yun-Fang ZHAO ; Jiao ZHENG ; Wen-Zhe HUANG ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2019;44(13):2675-2679
As an important integral part of traditional Chinese medicine chemical biology( TCMCB),it is of great importance to rapid isolate,and reliably identify the chemical components in herbal medicines. Phytochemical studies on the anti-inflammatory active part of Chinese dragon's blood,the red resin of Dracaena cochinchinensis,resulted in the isolation of two compounds,nordracophane( 1) and dracophane( 2),using LC-MS and chromatographic techniques( Silica gel,ODS and preparative HPLC). The structures,cyclic dihydrochalcane trimers,were elucidated on the basis of 1 D and 2 D NMR,MS,IR and UV spectral analysis. Compound 1 is a new compound,and 2 is isolated from D. cochinchinensis for the first time. Both compounds exhibited significant inhibition of nitric oxide production in lipopolysaccharides( LPS)-stimulated RAW264. 7 cells with IC50 values of( 14. 9±4. 50) and( 9. 0±0. 7) μmol·L-1.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
Chromatography, Liquid
;
Dracaena
;
Mass Spectrometry
;
Mice
;
Nitric Oxide
;
metabolism
;
Plant Extracts
;
isolation & purification
;
RAW 264.7 Cells
7.Anti-tumor activity of HIS-4,a biflavonoid from Resina draconis,on human hepatoma HepG2 and SK-HEP-1 cells.
Ya-Nan ZHAO ; Ai-Lin YANG ; Dao-Ran PANG ; Xiao-Qin SU ; Xiao-Nan CHEN ; Ying-Ying TIAN ; Yun-Fang ZHAO ; Jun LI ; Peng-Fei TU ; Zhong-Dong HU
China Journal of Chinese Materia Medica 2019;44(7):1442-1449
The research of anti-hepatocellular carcinoma(HCC) drug has attracted more and more attention. Natural products are the important source of active compounds for cancer treatment. A biflavonoid HIS-4 was isolated from Resina draconis in our previous study. MTT assay, hoechst staining, and flow cytometry analysis were used to investigate the effects of HIS-4 on the proliferation and apoptosis of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, the effects of HIS-4 on the migration and invasion ability of HepG2 and SK-HEP-1 cells were evaluated by wound healing assay and Transwell assay. In addition, MTT assay, flow cytometry analyses, Hoechst staining, wound healing assay, Transwell assay, and tube formation assay were used to explore the anti-angiogenic activity of HIS-4 in human umbilical vein endothelial cells(HUVECs). Mechanistically, the HIS-4 regulatory of signal pathways in H9 epG2 and SK-HEP-1 cells were analyzed by Western blot. This results showed that HIS-4 suppressed the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. Moreover HIS-4 induced their apoptosis of HepG2 and SK-HEP-1 cells. HIS-4 inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, HIS-4 exhibited angiogenesis effects. Mechanistically, up-regulation of MAPK signaling pathway and down-regulation of mTOR signaling pathway may be responsible for anti-hepatoma activity of HIS-4. Therefore, HIS-4 may be a promising candidate drug for HCC treatment.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Apoptosis
;
Biflavonoids
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Cell Movement
;
Cell Proliferation
;
Dracaena
;
chemistry
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
drug therapy
;
pathology
;
Phytochemicals
;
pharmacology