1.Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.
Chunxue YU ; Zixuan XIA ; Zhipeng XU ; Xiyang TANG ; Wenjuan DING ; Jihua WEI ; Danmei TIAN ; Bin WU ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):119-128
Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine. The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, electronic circular dichroism (ECD) calculations, 13C NMR calculation, modified Mosher's method, and chemical derivatization. Investigation of anti-inflammatory activities revealed that compounds 7-9, 11, 12, 14, 15, and 18 exhibited significant suppressive effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells, with IC50 values ranging from 0.44 to 4.40 μmol·L-1. Furthermore, these bioactive compounds were found to suppress the expression of inflammation-related proteins, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), NLR family pyrin domain-containing protein 3 (NLRP3), and nuclear factor kappa-B (NF-κB). Additional studies demonstrated that the novel compound 7 possessed potent anti-inflammatory activity by inhibiting the transcription of inflammation-related genes, downregulating the expression of inflammation-related proteins, and inhibiting the release of inflammatory cytokines, indicating its potential application in the treatment of inflammatory diseases.
Penicillium/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Hydrothermal Vents/microbiology*
;
Macrophages/immunology*
;
Molecular Structure
;
Nitric Oxide Synthase Type II/immunology*
;
Cyclooxygenase 2/immunology*
;
Geologic Sediments/microbiology*
;
NF-kappa B/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
2.Deciphering chemical and metabolite profiling of Chang-Kang-Fang by UPLC-Q-TOF-MS/MS and its potential active components identification.
Fengge YANG ; Sihao ZHANG ; Danmei TIAN ; Guirong ZHOU ; Xiyang TANG ; Xinglong MIAO ; Yi HE ; Xinsheng YAO ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):459-480
Chang-Kang-Fang (CKF) formula, a Traditional Chinese Medicine (TCM) prescription, has been widely used for the treatment of irritable bowel syndrome (IBS). However, its potential material basis and underlying mechanism remain elusive. Therefore, this study employed an integrated approach that combined ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) with network pharmacology to systematically characterize the phytochemical components and metabolites of CKF, as well as elucidating its underlying mechanism. Through this comprehensive analysis, a total of 150 components were identified or tentatively characterized within the CKF formula. Notably, six N-acetyldopamine oligomers from CicadaePeriostracum and eight resin glycosides from Cuscutae Semen were characterized in this formula for the first time. Meanwhile, 149 xenobiotics (58 prototypes and 91 metabolites) were detected in plasma, urine, feces, brain, and intestinal contents, and the in vivo metabolic pathways of resin glycosides were elaborated for the first time. Furthermore, network pharmacology and molecular docking analyses revealed that alkaloids, flavonoids, chromones, monoterpenes, N-acetyldopamine dimers, p-hydroxycinnamic acid, and Cus-3/isomer might be responsible for the beneficial effects of CKF in treating IBS, and CASP8, MARK14, PIK3C, PIK3R1, TLR4, and TNF may be its potential targets. These discoveries offer a comprehensive understanding of the potential material basis and clarify the underlying mechanism of the CKF formula in treating IBS, facilitating the broader application of CKF in the field of medicine.
Humans
;
Tandem Mass Spectrometry/methods*
;
Irritable Bowel Syndrome/drug therapy*
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/chemistry*
;
Glycosides
;
Chromatography, High Pressure Liquid/methods*
3.Chemical screen identifies shikonin as a broad DNA damage response inhibitor that enhances chemotherapy through inhibiting ATM and ATR.
Fangfang WANG ; Sora JIN ; Franklin MAYCA POZO ; Danmei TIAN ; Xiyang TANG ; Yi DAI ; Xinsheng YAO ; Jinshan TANG ; Youwei ZHANG
Acta Pharmaceutica Sinica B 2022;12(3):1339-1350
DNA damage response (DDR) is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs. Hence, small molecules that inhibit DDR are expected to enhance the anti-cancer effect of chemotherapy. Through a recent chemical library screen, we identified shikonin as an inhibitor that strongly suppressed DDR activated by various chemotherapeutic drugs in cancer cell lines derived from different origins. Mechanistically, shikonin inhibited the activation of ataxia telangiectasia mutated (ATM), and to a lesser degree ATM and RAD3-related (ATR), two master upstream regulators of the DDR signal, through inducing degradation of ATM and ATR-interacting protein (ATRIP), an obligate associating protein of ATR, respectively. As a result of DDR inhibition, shikonin enhanced the anti-cancer effect of chemotherapeutic drugs in both cell cultures and in mouse models. While degradation of ATRIP is proteasome dependent, that of ATM depends on caspase- and lysosome-, but not proteasome. Overexpression of ATM significantly mitigated DDR inhibition and cell death induced by shikonin and chemotherapeutic drugs. These novel findings reveal shikonin as a pan DDR inhibitor and identify ATM as a primary factor in determining the chemo sensitizing effect of shikonin. Our data may facilitate the development of shikonin and its derivatives as potential chemotherapy sensitizers through inducing ATM degradation.

Result Analysis
Print
Save
E-mail