1.Glatiramer acetate inhibits the activation of NFkappaB in the CNS of experimental autoimmune encephalomyelitis.
Insun HWANG ; Danbee HA ; Dae Seung KIM ; Haejin JOO ; Youngheun JEE
Korean Journal of Veterinary Research 2011;51(3):217-225
Glatiramer acetate (GA; Copaxone) has been shown to be effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). It has been recently shown that GA-reactive T cells migrate through the blood-brain barrier, accumulate in the central nervous system (CNS), secrete antiinflammatory cytokines and suppress production of proinflammatory cytokines of EAE and MS. Development of EAE requires coordinated expression of a number of genes involved in the activation and effector functions of inflammatory cells. Activation of inflammatory cells is regulated at the transcriptional level by several families of transcription factors. One of these is the nuclear factor kappa B (NFkappaB) family which is present in a variety of cell types and involved in the activation of immune-relative genes during inflammatory process. Since it is highly activated at site of inflammation, NFkappaB activation is also implicated in the pathogenesis of EAE. In this study, we examined whether the inhibition of NFkappaB activation induced by GA can have suppressive therapeutic effects in EAE mice. We observed the expression of NFkappaB and phospho-IkappaB proteins increased in GA-treated EAE mice compared to EAE control groups. The immunoreactivity in inflammatory cells and glial cells of NFkappaB and phospho-IkappaB significantly decreased at the GA-treated EAE mice. These results suggest that treatment of GA in EAE inhibits the activation of NFkappaB and phophorylation of IkappaB in the CNS. Subsequently, the inhibition of NFkappaB activation and IkappaB phosphorylation leads to the anti-inflammatory effects thereby to reduce the progression and severity of EAE.
Animals
;
Blood-Brain Barrier
;
Central Nervous System
;
Cytokines
;
Encephalomyelitis, Autoimmune, Experimental
;
Humans
;
Inflammation
;
Mice
;
Models, Animal
;
Multiple Sclerosis
;
Neuroglia
;
NF-kappa B
;
Peptides
;
Phosphorylation
;
Proteins
;
T-Lymphocytes
;
Transcription Factors
2.The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice.
Insun HWANG ; Danbee HA ; So Jin BING ; Kyong Leek JEON ; Ginnae AHN ; Dae Seung KIM ; Jinhee CHO ; Jaehak LIM ; Sin Hyeog IM ; Kyu Kye HWANG ; Youngheun JEE
Korean Journal of Veterinary Research 2012;52(3):183-191
The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require CD4+CD25+ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both CD4+CD25+ T cell and CD4+Foxp3+ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of CD4+CD25+ T cell and CD4+Foxp3+ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.
Animals
;
Autoimmune Diseases
;
Brain
;
Gene Expression
;
Heart
;
Immune Tolerance
;
Inflammation
;
Kidney
;
Liver
;
Lung
;
Mice
;
Muscles
;
Spinal Cord
;
Spleen
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory
;
Transcription Factors
;
Transgenes
;
Zidovudine
3.Establishing Patient-Derived Cancer Cell Cultures and Xenografts in Biliary Tract Cancer
Jihoon KANG ; Ji-Young LEE ; Sunmin LEE ; Danbee KIM ; Jinyeong LIM ; Ha Ra JUN ; Seyeon JEON ; Young-Ae KIM ; Hye Seon PARK ; Kyu-pyo KIM ; Sung-Min CHUN ; Hee Jin LEE ; Changhoon YOO
Cancer Research and Treatment 2023;55(1):219-230
Purpose:
Biliary tract cancers (BTCs) are rare and show a dismal prognosis with limited treatment options. To improve our understanding of these heterogeneous tumors and develop effective therapeutic agents, suitable preclinical models reflecting diverse tumor characteristics are needed. We established and characterized new patient-derived cancer cell cultures and patient-derived xenograft (PDX) models using malignant ascites from five patients with BTC.
Materials and Methods:
Five patient-derived cancer cell cultures and three PDX models derived from malignant ascites of five patients with BTC, AMCBTC-01, -02, -03, -04, and -05, were established. To characterize the models histogenetically and confirm whether characteristics of the primary tumor were maintained, targeted sequencing and histopathological comparison between primary tissue and xenograft tumors were performed.
Results:
From malignant ascites of five BTC patients, five patient-derived cancer cell cultures (100% success rate), and three PDXs (60% success rate) were established. The morphological characteristics of three primary xenograft tumors were compared with those of matched primary tumors, and they displayed a similar morphology. The mutated genes in samples (models, primary tumor tissue, or both) from more than one patient were TP53 (n=2), KRAS (n=2), and STK11 (n=2). Overall, the pattern of commonly mutated genes in BTC cell cultures was different from that in commercially available BTC cell lines.
Conclusion
We successfully established the patient-derived cancer cell cultures and xenograft models derived from malignant ascites in BTC patients. These models accompanied by different genetic characteristics from commercially available models will help better understand BTC biology.
4.Validation of prediction model for successful discontinuation of continuous renal replacement therapy: a multicenter cohort study
Junseok JEON ; Eun Jeong KO ; Hyejeong PARK ; Song In BAEG ; Hyung Duk KIM ; Ji-Won MIN ; Eun Sil KOH ; Kyungho LEE ; Danbee KANG ; Juhee CHO ; Jung Eun LEE ; Wooseong HUH ; Byung Ha CHUNG ; Hye Ryoun JANG
Kidney Research and Clinical Practice 2024;43(4):528-537
Continuous renal replacement therapy (CRRT) has become the standard modality of renal replacement therapy (RRT) in critically ill patients. However, consensus is lacking regarding the criteria for discontinuing CRRT. Here we validated the usefulness of the prediction model for successful discontinuation of CRRT in a multicenter retrospective cohort. Methods: One temporal cohort and four external cohorts included 1,517 patients with acute kidney injury who underwent CRRT for >2 days from 2018 to 2020. The model was composed of four variables: urine output, blood urea nitrogen, serum potassium, and mean arterial pressure. Successful discontinuation of CRRT was defined as the absence of an RRT requirement for 7 days thereafter. Results: The area under the receiver operating characteristic curve (AUROC) was 0.74 (95% confidence interval, 0.71–0.76). The probabilities of successful discontinuation were approximately 17%, 35%, and 70% in the low-score, intermediate-score, and highscore groups, respectively. The model performance was good in four cohorts (AUROC, 0.73–0.75) but poor in one cohort (AUROC, 0.56). In one cohort with poor performance, attending physicians primarily controlled CRRT prescription and discontinuation, while in the other four cohorts, nephrologists determined all important steps in CRRT operation, including screening for CRRT discontinuation. Conclusion: The overall performance of our prediction model using four simple variables for successful discontinuation of CRRT was good, except for one cohort where nephrologists did not actively engage in CRRT operation. These results suggest the need for active engagement of nephrologists and protocolized management for CRRT discontinuation.