1.Protective effects of anisodamine on brain mitochondrial damage after complete cerebral ischemia and reperfusion in rabbits
Daixing ZHOU ; Qiang ZHONG ; Zheng LI ; Puzhen DENG
Chinese Journal of Tissue Engineering Research 2005;9(41):165-167
BACKGROUND: An isodamine, a kind of alkaloid, is extracted from Anisodus tanguticus (Maxim.) Pascher and is also a good protective agent of cell. However, functional change of mitochondrion is the most sensitive index reflecting cell injury.OBJECTIVE: To study the effects of anisodamine on brain mitochondrial damage following global cerebral ischemia and reperfusion in domestic rabbits and explore its mechanism.DESIGN: Totally randomized controlled trials.SETTING: Emergency Department of Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology.MATERIALS: The experiment was carried out in the laboratory of Emergency Department, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, from September to December in 2002. Thirty healthy domestic rabbits of either sex were used and randomized into sham-operation group, ischemia-reperfusion group and anisodamine group with 10 rabbits in each group.METHODS: The models of complete cerebral ischemia and reperfusion injury in rabbits were established by ligation of bilateral common carotids and vertebral arteries with systemic hypotension, ischemia lasting for 20 minutes followed by 2-hour reperfusion. Anisodamine group was injected with anisodamine at a dose of 10 mg/kg body mass via femoral vein one minute before reperfusion, and lasted for 2 hours at a dose of 5 mg/hour by micro-pump. Ischemia-reperfusion group was treated with normal saline of the same volume. Sham-operation group only underwent used to determine mitochondrial respiratory functions, including respiratory control rate (RCR), the ratio of adenosine diphosphate to oxygen nicotinamide adenine dinucleotide hydrogenated (NADH) oxidase, succinate oxidase and cytochrome C oxidase were measured by the oxygenmethod of Yagi.drial calcium (Ca2+) and malondiadhyde (MDA) in cortex.reperfusion group and anisodamine group, RCR, ADP/O, OPR levels were lower than those in sham-operation group [nicotinamide adenine dinucleotide chain: RCR: 2.34±0.18,3.58±0.29,4.07±0.38,P < 0.05-0.01;ADP/O: 1.77±0.10,2.23±0.14,2.41±0.17,P < 0.05-0.01; OPR: (5.27±0.78),(8.03±1.30), (9.63±1.50)μkat/g, P < 0.05-0.01; flavin adenine dinucleotide chain: RCR: 1.47±0.23,2.53±0.28,2.84±0.36,P < 0.05-0.01;ADP/O: 0.88±0.09,1.58±0.11,1.73±0.17 ,P < 0.05-0.01; OPR: (6.05±1.13),(7.47±1.40), (8.62±1.60)μkat/g,P < 0.05-0.01], and those were higher in chemia-reperfusion group and anisodamine group, the activities of respiratory chain oxidase of NADH, succinate and cytochrome C were lower than those in sham-operation group [NADH: (2.62±0.35), (4.55±0.48), (5.07±0.60)μkat/g;succinate: (1.48±0.17), (1.83±0.22), (2.10±0.28)μkat/g; cytochrome C:(5.03±1.12), (7.62±1.23), (9.00±1.53)μkat/g, P < 0.05-0.01], and those were higher in anisodamine group than in ischemia-reperfusion group, the content of mitochondrial Ca2+ [(2.36±0.23), (1.39±0.17),(1.22±0.12) mg/g] and MDA [(36.38±10.42), (22.69±9.56), (19.74±7.26)μmol/g,(P < 0.05-0.01 )] was higher than that in sham-operation group, and it was lower in anisodamine group than in ischemia-reperfusion group (P < 0.01).CONCLUSION: Anisodamine can protect the brain against ischemiareperfusion injury at the level of mitochondria by antagonism of Ca2+, inhibition of lipid peroxidation, stabilization of mitochondrial membrane, alleviation of mitochondrial damage, and improvement of motochondrial respiratory functions and the activities of enzymes of respiratory chain.
2.The expression level of serum IL-7 and its influence on prognosis in patients with acute coronary syndrome
Daixing ZHOU ; Dingmiao WANG ; Chengye ZHAN ; Li YAN ; Qiang ZHONG ; Shusheng LI
Chinese Journal of cardiovascular Rehabilitation Medicine 2014;23(6):597-601
Objective: To explore the expression level of serum interleukin (IL)-7 in patients with acute coronary syndrome (ACS) and analyze the relationship between IL-7 level and prognosis. Methods: A total of 130 ACS patients [ACS group, including 70 cases with acute myocardial infarction (AMI) and 60 cases with unstable angina pectoris (UAP)], 33 cases with stable angina pectoris (SAP,SAP group) and 89 healthy subjects (healthy control group) were selected. IL-7 level was measured using enzyme linked immunosorbent assay (ELISA) and compared among all groups. The 130 ACS patients were followed up, and Logistic regression analysis was used to analyze the relationship between IL-7 level and prognosis. Results: Compared with healthy control group and SAP group, there was significant rise in IL-7 level in UAP group and AMI group [(1.84±0.47) pg/ml, (2.11±0.63) pg/ml vs. (4.87±0.52) pg/ml, (5.15±0.71) pg/ml, P<0.05 or P<0.01]. There were no significant difference in IL-7 level between healthy control group and SAP group, UAP group and AMI group (P>0.05 both); Logistic regression analysis indicated that expression level of serum IL-7 was an independent risk factor for adverse cardiovascular events in ACS patients (OR=1.212, 95%CI:1.061-1.418). Conclusion: Interleukin-7, as an important inflammatory cytokines, its serum level abnormally elevated in patients with acute coronary syndrome, it may have important prognostic value.
3.Research Status of the Skeletalre Construction of Chest Wall.
Daixing ZHONG ; Lei WANG ; Xiaofei LI ; Lijun HUANG
Chinese Journal of Lung Cancer 2018;21(4):273-276
Chest wall defect may be caused by many factors such as the resection of tumor and trauma, and the reconstruction of bone-defection is still the key point of thoracic surgery. With the development of material science, more and more new materials have been used in medical practice, which makes huge progress in the surgery of chest wall. However, none of these materials satisfy all the practical needs of the reconstruction. Recently, with the development of the capacity of computer, 3D-printing technology has been gradually used in clinical work, and the idea of individual treatment has been accepted by more and more people. The weakness of these materials may be solved by the new material and the application of individual treatment, which could also make great advance in chest wall surgery. This article will make a summary of the research on the reconstruction of chest wall.
.
Animals
;
Biocompatible Materials
;
chemical synthesis
;
chemistry
;
Humans
;
Printing, Three-Dimensional
;
Reconstructive Surgical Procedures
;
instrumentation
;
methods
;
Thoracic Neoplasms
;
surgery
;
Thoracic Wall
;
surgery
;
transplantation
4.Clinical treatment guideline for pulmonary blast injury (version 2023)
Zhiming SONG ; Junhua GUO ; Jianming CHEN ; Jing ZHONG ; Yan DOU ; Jiarong MENG ; Guomin ZHANG ; Guodong LIU ; Huaping LIANG ; Hezhong CHEN ; Shuogui XU ; Yufeng ZHANG ; Zhinong WANG ; Daixing ZHONG ; Tao JIANG ; Zhiqiang XUE ; Feihu ZHOU ; Zhixin LIANG ; Yang LIU ; Xu WU ; Kaican CAI ; Yi SHEN ; Yong SONG ; Xiaoli YUAN ; Enwu XU ; Yifeng ZHENG ; Shumin WANG ; Erping XI ; Shengsheng YANG ; Wenke CAI ; Yu CHEN ; Qingxin LI ; Zhiqiang ZOU ; Chang SU ; Hongwei SHANG ; Jiangxing XU ; Yongjing LIU ; Qianjin WANG ; Xiaodong WEI ; Guoan XU ; Gaofeng LIU ; Junhui LUO ; Qinghua LI ; Bin SONG ; Ming GUO ; Chen HUANG ; Xunyu XU ; Yuanrong TU ; Liling ZHENG ; Mingke DUAN ; Renping WAN ; Tengbo YU ; Hai YU ; Yanmei ZHAO ; Yuping WEI ; Jin ZHANG ; Hua GUO ; Jianxin JIANG ; Lianyang ZHANG ; Yunfeng YI
Chinese Journal of Trauma 2023;39(12):1057-1069
Pulmonary blast injury has become the main type of trauma in modern warfare, characterized by externally mild injuries but internally severe injuries, rapid disease progression, and a high rate of early death. The injury is complicated in clinical practice, often with multiple and compound injuries. Currently, there is a lack of effective protective materials, accurate injury detection instrument and portable monitoring and transportation equipment, standardized clinical treatment guidelines in various medical centers, and evidence-based guidelines at home and abroad, resulting in a high mortality in clinlcal practice. Therefore, the Trauma Branch of Chinese Medical Association and the Editorial Committee of Chinese Journal of Trauma organized military and civilian experts in related fields such as thoracic surgery and traumatic surgery to jointly develop the Clinical treatment guideline for pulmonary blast injury ( version 2023) by combining evidence for effectiveness and clinical first-line treatment experience. This guideline provided 16 recommended opinions surrounding definition, characteristics, pre-hospital diagnosis and treatment, and in-hospital treatment of pulmonary blast injury, hoping to provide a basis for the clinical treatment in hospitals at different levels.