1.Strategies for screening protective viral antigens and their applications in the development of novel vaccines.
Dailang ZHONG ; Tao WANG ; Rui LUO ; Hua-Ji QIU ; Yuan SUN
Chinese Journal of Biotechnology 2022;38(8):2857-2871
With the development of vaccine research and development technologies, novel vaccines have been widely used in the prevention of various infectious diseases. Due to the excellent safety, novel vaccines have unique advantages in the application of vaccines against virulent pathogens. The major premise of developing novel vaccines is to screen protective antigens. With the development of various omics research, cutting-edge bioinformatics tools for eukaryotes have been well developed, while the much simpler structure of viruses compared with eukaryotic cells corresponds to relatively simple research methods. Strategies for screening protective antigens need to combine the advantages of both bioinformatics methods and traditional molecular biology methods. In this review, the strategies for screening virus protective antigens were discussed from the perspective of host and virus, and a series of bioinformatics tools developed based on eukaryotic cells that may be used for screening protective antigens were listed. This review also summarized the cases of using protective antigens to design novel vaccines, in order to better understand the strategies for screening virus protective antigens and facilitate the research and development of novel vaccines.
Antigens
;
Antigens, Viral/genetics*
;
Computational Biology
;
Research
;
Vaccines
;
Viral Vaccines/genetics*
2.Advances in methodologies for evaluating cell-mediated immune responses.
Zhanhao LU ; Rui LUO ; Tao WANG ; Dailang ZHONG ; Hua-Ji QIU ; Yuan SUN
Chinese Journal of Biotechnology 2023;39(12):4759-4772
Cell-mediated immune response is an important part of machinery in maintaining the body's homeostasis. After the innate immune system selectively activates the adaptive immune system, the cell-mediated immunity exerts its killing and clearance functions. Therefore, evaluating the level of cell-mediated immune response is crucial in the diagnosis and treatment of cancer, monitoring the immune status after organ transplantation, diagnosing and preventing viral diseases, and evaluating the effectiveness of vaccines and other areas. From the initial overall assessment of the immune effects in vivo to the precise detection of the number and function of multiple immune cells, the evaluation methods of cell-mediated immune response have greatly advanced. However, cell-mediated immune response involves multiple levels in the body, and it's difficult to choose the numerous detection methods available. The article systematically compares the evaluation methods of cell-mediated immune response at four different levels: the organism, the tissue and organ, the immune cells and the immune molecules, with the aim to facilitate the applications of related technologies.
Humans
;
Immunity, Cellular
;
Neoplasms/therapy*
;
Immunity, Innate