1. Damage of blue-light exposure to retinal morphology and function in mice
Daidi YANG ; Ruxu SUN ; Xue CHEN ; Qinghuai LIU
Chinese Journal of Experimental Ophthalmology 2020;38(1):10-15
Objective:
To study the damage effects of blue-light exposure on retinal morphology and function in mouse.
Methods:
Twenty 8-week-old clean C57BL/6J mice were randomly divided into blue-light exposure group and normal control group by coin tossing method.The mice in the blue-light exposure group was exposed to 10 000 lx blue light for 5 days after dark adaptation for 24 hours, and the mice in the normal control group was kept under the normal light intensity for 5 days at 12-hour light/12-hour darkness cycles.The retinal thickness was detected by optical coherence tomography (OCT), and retinal function was evaluated by electroretinogram (ERG). The mice was sacrificed and the frozen section and flat mount of eyeball wall was created at 24 hours after irradiation.The expressions of rhodopsin (Rho), zonula occludens-1 (ZO-1) and β-catenin in the retinas were detected by immunofluorescent staining.The use and care of the experimental animals adhered to ARVO Statement by American Society of Visual and Ophthalmological Sciences (No.IACUC-1803029).
Results:
The thickness of the retinal outer nuclear layer at 200, 400, 600, 800 and 1 000 μm from the superior and inferior to optic nerves were thinned in the mice of the blue-light exposure group compared with those of the normal control group, showing significant differences between the two groups (all at
2.Industrial development and biomedical application prospect of recombinant collagen.
Rongzhan FU ; Daidi FAN ; Wanjuan YANG ; Liang CHEN ; Ci QU ; Shulin YANG ; Liming XU
Chinese Journal of Biotechnology 2022;38(9):3228-3242
Recombinant collagen, as an alternative to natural collagen, has the potential to be widely used in biomaterials, biomedicine, etc. Diverse recombinant collagens and their variants can be industrially produced in a variety of expression systems, which lays a foundation for exploring and expanding the clinical application of recombinant collagens. We reviewed different expression systems for recombinant collagens, such as prokaryotic expression systems, yeast expression systems, as well as plant, insect, mammal, and human cell expression systems, and introduced the advantages, potential applications, and limitations of recombinant collagen. In particularly, we focused on the current progress in the recombinant collagen production, including recombinant expression system construction and hydroxylation strategies of recombinant collagen, and summarized the current biomedical applications of recombinant collagen.
Animals
;
Biocompatible Materials
;
Collagen/biosynthesis*
;
Humans
;
Hydroxylation
;
Recombinant Proteins/biosynthesis*