1.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
2.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
3.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
4.Advances in neuroimaging mechanisms of lifelong premature ejaculation based on magnetic resonance imaging.
Da-Wei GAO ; Yi-Han JIN ; Da-Lin SUN ; Bao-Fang JIN
National Journal of Andrology 2025;31(6):552-557
Magnetic resonance imaging (MRI), as a non-invasive neuroimaging technique, has been widely employed to investigate changes in functional brain regions. In recent years, the application of MRI in the study of lifelong premature ejaculation (LPE) has progressively uncovered the pathological mechanisms underlying abnormalities in LPE-associated brain regions. These mechanisms involve brain areas associated with higher-order cognitive and decision-making regulation, sensory and perceptual processing, as well as emotional regulation and reward systems. The application and findings of MRI in the study of LPE mechanisms will be introduced in this review, with the goal of deepening our understanding of the neuroimaging-based mechanisms of LPE.
Humans
;
Premature Ejaculation/physiopathology*
;
Male
;
Magnetic Resonance Imaging
;
Neuroimaging
;
Brain
5.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
6.Clinical safety and validity analysis of retrograde new endo-scopic visual field in miniature pigs
Zhe KUANG ; Peng LI ; Da-Qing JIN ; Yong-Chao ZHANG ; Hui-Li GUO ; Yu-Fei ZHANG ; Guang-Lin HE ; Guo-Feng SUN ; Yuan HE
Chinese Journal of Current Advances in General Surgery 2024;27(1):14-18
Objective:To study the clinical safety and validity of retrograde new endoscopic field of vision in miniature pigs.Methods:6 live miniature pigs were selected as study subjects,En-doscopic Retrograde New View(ERNV)was selected.The performance,image quality and intraoper-ative and postoperative complications were evaluated.To evaluate whether all the experimental ani-mals could complete the relevant endoscopy.Verify ERNV's operating performance,including whether the duodenoscope can enter the biliary tract smoothly,and made sure whether the injection,suction,and instrument channels were unobstructed.Choledochoscope image clarity,color resolu-tion,image deformation and distortion,accurate evaluation of lumen conditions and clear observation of mucosal surface conditions were analyzed.Whether there were operant injuries such as bleeding and perforation,as well as adverse events such as respiratory depression and cardiac arrest.The sur-vival status and adverse reactions of all pigs were observed.Results:The choledochoscope was successfully inserted into the bile duct of 6 miniature pigs.The product had good operation perfor-mance and could enter the bile duct through the duodenoscope smoothly.The injection,suction and instrument channels were relatively smooth.In addition,the endoscopic images are clear,with better color resolution,and without image deformation and distortion,which can realize accurate evaluation of the conditions in the lumen and observe the mucosal surface conditions more clearly.No bile duct stenosis or dilatation occurred in all miniature pigs,and the bile duct mucosa was smooth,without hyperemia and edema,and no abnormal thickening or bending of mucous vessels.During the exami-nation,there were no operational injuries such as bleeding and perforation,and no adverse events such as respiratory depression and cardiac arrest occurred.The vital signs of all miniature pigs tended to be stable after operation,and the survival state was good,and there were no complications such as cholangitis,bleeding and perforation.Conclusion:ERNV has good clinical safety and efficacy,ex-cellent operation performance and excellent image quality,and is worthy of clinical application.
7.Dosimetric effect of calculation grid size on stereotactic body radiation therapy of lung cancer in helical tomotherapy planning system
Xia-Yu HANG ; Wan-Rong JIANG ; Yi-Kun LI ; Jun HU ; Yan ZHANG ; Ruo-Qi CAO ; Nan XU ; Lei WANG ; Jin-Da ZHOU ; Xiang-Dong SUN
Chinese Medical Equipment Journal 2024;45(2):52-57
Objective To investigate the dosimetric effects of different calculation grid size(CGS)in helical tomotherapy(HT)planning system on stereotactic body radiation therapy(SBRT)for non-small cell lung cancer(NSCLC).Methods Nine NSCLC patients receiving radiation therapy for the first time at some hospital from March 2019 to December 2022 were selected as the subjects.SBRT planning was carried out through the HT system with three different CGS plans(Fine,Normal,and Coarse)and the same pitch,modulation factor(MF)and optimization conditions,and the target area indexes of the three CGS plans were compared including conformity index(CI),homogeneity index(HI),dosimetric parameters of the organ at risk(OAR),point dose verification pass rate,treatment time,number of monitor units and Sinograms.SPSS 22.0 was used for statistical analysis.Results For target area HI,there weres significant differences between CGS Fine plan and Coarse plan and between CGS Normal plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan(P>0.05).For target area CI,there were significant differences between CGS Fine plan and Coarse plan(P<0.05),while no statistical differences were found between CGS Fine plan and Normal plan and between CGS Normal plan and Coarse plan(P>0.05).For OAR dosimetric parameters,CGS Fine plan and Coarse plan had significant differences in heart Dmax and Dmean,esophageal Dmax and Dmean,V5,V20,V30 and Dmean of the whole lung and affected lung,V5 and Dmax of the affected lung and heart V10 and V30(P<0.05),CGS Normal plan and Coarse plan had obvious differences in esophageal Dmax(P<0.05),and the remained dosimetric parameters were not statistically significant(P>0.05).Fine,Normal and Coarse plans had the point dose verifica-tion pass rates being 0.96%,1.50%and 1.77%,respectively.In terms of treatment time and number of monitor units,there were significant differences between Fine plan and Coarse plan(P<0.05)while no statistical differences were found between Fine and Normal plans and between Normal and Coarse plans(P>0.05).Sinograms analyses showed Fine plan had evenly distributed segment color gradient,Coarse plan had areas of very dark and very light color gradients and Normal plan was somewhere in between.Conclusion Low CGS has to be used as much as possible to obtain accurate dose distribution during SBRT planning for NSCLC patients,which contributes to the execution of the radiation therapy plan and the prevention of ad-verse effects.[Chinese Medical Equipment Journal,2024,45(2):52-57]
8.Development of biological safety protection third-level laboratory based on folding-modular shelters
Si-Qing ZHAO ; Jian-Qiao XIA ; Zhong-Jie SUN ; Kang OUYANG ; Xiao-Jun JIN ; Kang-Li ZHOU ; Wei XIE ; Hai-Yang LI ; Da-Peng JIANG ; Yan-Yan GAO ; Bei SUN
Chinese Medical Equipment Journal 2024;45(3):41-46
Objective To develop a biological safety protection third-level(BSL-3)laboratory based on folding-modular shelters to solve the problems of the existing laboratories in space and function expansion,large-scale deployment and low-cost transportation.Methods The BSL-3 laboratory was composed of a folding combined shelter module,a ventilation and purification module,a power supply and distribution module,a monitoring and communication module,a control system module and an equipment module.The folding combined shelter module used a leveling base frame as the foundation and a lightweight panel as the enclosure mechanism,and was divided into an auxiliary area and a protection protected area;the ventilation and purification module was made up of an air supply unit and an air exhaust unit,the air supply unit was integrated with a fresh-air air conditioner and the exhaust unit was equipped with a main fan,a standby fan and a bag in/bag out filter;the control system module adopted a supervision mode of decentralized control and centralized management,which executed communication with the data server as the center and Profinet protocol and MODBUS-TCP.Results The BSL-3 laboratory proved to meet the requirements of relevant standards in internal microenvironment,airflow direction,airtightness,working condition and disinfection effect.Conclusion The BSL-3 laboratory is compatible with large-scale transport and deployment and facilitates reliable and safe experiments for epidemic prevention and control and cross-regional support.[Chinese Medical Equipment Journal,2024,45(3):41-46]
9.The Uptake and Distribution Evidence of Nano-and Microplastics in vivo after a Single High Dose of Oral Exposure
Tao HONG ; Wei SUN ; Yuan DENG ; Da Jian LYU ; Hong Cui JIN ; Long Ying BAI ; Jun NA ; Rui ZHANG ; Yuan GAO ; Wei Guo PAN ; Sen Zuo YANG ; Jun Ling YAN
Biomedical and Environmental Sciences 2024;37(1):31-41
Objective Tissue uptake and distribution of nano-/microplastics was studied at a single high dose by gavage in vivo.Methods Fluorescent microspheres (100 nm, 3 μm, and 10 μm) were given once at a dose of 200 mg/(kg·body weight). The fluorescence intensity (FI) in observed organs was measured using the IVIS Spectrum at 0.5, 1, 2, and 4 h after administration. Histopathology was performed to corroborate these findings.Results In the 100 nm group, the FI of the stomach and small intestine were highest at 0.5 h, and the FI of the large intestine, excrement, lung, kidney, liver, and skeletal muscles were highest at 4 h compared with the control group (P < 0.05). In the 3 μm group, the FI only increased in the lung at 2 h (P < 0.05). In the 10 μm group, the FI increased in the large intestine and excrement at 2 h, and in the kidney at 4 h (P < 0.05). The presence of nano-/microplastics in tissues was further verified by histopathology. The peak time of nanoplastic absorption in blood was confirmed.Conclusion Nanoplastics translocated rapidly to observed organs/tissues through blood circulation;however, only small amounts of MPs could penetrate the organs.
10.A Position Statement on Diabetes with β-Cell Failure
Ji Yoon KIM ; Sang-Man JIN ; Gyuri KIM ; Soo Kyoung KIM ; Won Jun KIM ; Sun Joon MOON ; Jee Hee YOO ; Da Young LEE ; Seung-Eun LEE ; Ji Eun JUN ; Jae Hyeon KIM ;
Journal of Korean Diabetes 2024;25(3):124-134
Diabetes mellitus is a heterogeneous disease that encompasses a wide range of conditions, from mild cases to severe conditions where survival depends on insulin therapy. The Korean Diabetes Association Task Force Team for Diabetes with β-Cell Failure has established the term to classify severe refractory disease with β-cell failure. Individuals with β-cell failure are at high risk of diabetes-related complications. We propose that diabetes with β-cell failure can be diagnosed when individuals treated with multiple daily insulin injections or insulin pumps meet at least one of the following criteria: fasting C-peptide ≤ 0.6 ng/mL, non-fasting C-peptide ≤ 1.8 ng/mL, 24-hour urine C-peptide < 30 μg/day, or spot urine C-peptide/creatinine ratio ≤ 0.6 nmol/mmol. Among cases of diabetes with β-cell failure, β-cell failure with absolute insulin deficiency can be diagnosed when at least one of the following criteria is met: fasting C-peptide < 0.24 ng/mL, non-fasting C-peptide < 0.6 ng/mL, or spot urine C-peptide/ creatinine ratio < 0.2 nmol/mmol. Multiple daily insulin injections with long-acting insulin analogs and rapid-acting insulin analogs or insulin pumps are required for treatment of diabetes with β-cell failure. Continuous glucose monitoring and an automated insulin delivery system, sensor-augmented pump, or smart insulin pen, along with structured education, are necessary. We call for improvements in the relevant systems to ensure that such treatments can be provided.

Result Analysis
Print
Save
E-mail