1.Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway.
Xiao-Yan HE ; Jing-Tao LIANG ; Jing-Yi XIAO ; Xin LI ; Xiao-Bo ZHANG ; Da-Yi CHEN ; Li-Juan WU
Chinese journal of integrative medicine 2025;31(7):600-612
OBJECTIVE:
To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms.
METHODS:
The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-β 1 (TGF-β 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-β 1, TGF-β 1+10% DMS, TGF-β 1+10% DMS+miR-29b-2-5p inhibitor, TGF-β 1+10% DMS+inhibitor negative control, TGF-β 1+10% DMS+miR-29b-2-5p mimic and TGF-β 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA.
RESULTS:
The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01).
CONCLUSIONS
Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.
MicroRNAs/genetics*
;
Glycolysis/genetics*
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Hexokinase/genetics*
;
Cell Line
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Movement/drug effects*
;
Male
;
Cell Survival/drug effects*
;
Signal Transduction/drug effects*
2.Advances in Lung Cancer Treatment: Integrating Immunotherapy and Chinese Herbal Medicines to Enhance Immune Response.
Yu-Xin XU ; Lin CHEN ; Wen-da CHEN ; Jia-Xue FAN ; Ying-Ying REN ; Meng-Jiao ZHANG ; Yi-Min CHEN ; Pu WU ; Tian XIE ; Jian-Liang ZHOU
Chinese journal of integrative medicine 2025;31(9):856-864
3.Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine.
Xin-Ran DU ; Meng-Yi WU ; Mao-Can TAO ; Ying LIN ; Chao-Ying GU ; Min-Feng WU ; Yi CAO ; Da-Can CHEN ; Wei LI ; Hong-Wei WANG ; Ying WANG ; Yi WANG ; Han-Zhi LU ; Xin LIU ; Xiang-Fei SU ; Fu-Lun LI
Journal of Integrative Medicine 2025;23(6):641-653
Traditional Chinese medicine (TCM) is a well-accepted therapy for atopic dermatitis (AD). However, there are currently no evidence-based guidelines integrating TCM and Western medicine for the treatment of AD, limiting the clinical application of such combined approaches. Therefore, the China Association of Chinese Medicine initiated the development of the current guideline, focusing on key issues related to the use of TCM in the treatment of AD. This guideline was developed in accordance with the principles of the guideline formulation manual published by the World Health Organization. A comprehensive review of the literature on the combined use of TCM and Western medicine to treat AD was conducted. The findings were extensively discussed by experts in dermatology and pharmacy with expertise in both TCM and Western medicine. This guideline comprises 23 recommendations across seven major areas, including TCM syndrome differentiation and classification of AD, principles and application scenarios of TCM combined with Western medicine for treating AD, outcome indicators for evaluating clinical efficacy of AD treatment, integration of TCM pattern classification and Western medicine across disease stages, daily management of AD, the use of internal TCM therapies and proprietary Chinese medicines, and TCM external treatments. Please cite this article as: Du XR, Wu MY, Tao MC, Lin Y, Gu CY, Wu MF, Cao Y, Chen DC, Li W, Wang HW, Wang Y, Wang Y, Lu HZ, Liu X, Su XF, Li FL. Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine. J Integr Med. 2025; 23(6):641-653.
Dermatitis, Atopic/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Integrative Medicine
;
Drugs, Chinese Herbal/therapeutic use*
;
Practice Guidelines as Topic
4.Mechanism of icariin regulating the NLRP3 inflammasome against cerebral ischemia reperfusion
Qi ZENG ; Yachen WU ; Maohua HU ; Xiaoyun DA ; Yang LIU ; Xin YANG ; Ying DENG ; Ming LIU
Acta Laboratorium Animalis Scientia Sinica 2024;32(1):25-32
Objective To investigate the mechanism of icariin regulating the NLRP3 inflammasome in the treatment of cerebral ischemia-reperfusion injury in rats.Methods A rat model of focal cerebral ischemia-reperfusion was induced using the thread embolism method.At 24 hours post-operation,the rats were randomly allocated into a sham operation group,model group,butylphthalide group(70 mg/kg),ICA-low dose(20 mg/kg),ICA-middle dose(40 mg/kg),and ICA-high dose(80 mg/kg)groups.The corresponding drugs were administered by gavage at 10 mL/kg once a day for 13 consecutive days.One hour after the last administration,neurological function was scored.The cerebral cortex was observed by hematoxylin-eosin(HE)staining.Expression of interleukin(IL)-1β and IL-18 in the cerebral cortex was determined by immunohistochemistry.Expression of NLRP3,ASC,and Caspase-1 in the cerebral cortex was determined by Western Blot.Results In contrast to the sham operation group,there was a notable increase in neural function scores within the model group.The ischemic area around the visible cerebral cortex showed neuron necrosis at various level or glial cell proliferation,and the number of intact neurons was significantly reduced.IL-1β and IL-18 positive cells were significantly increased.Expression of NLRP3,ASC,and Caspase-1 was significantly increased(P<0.01,P<0.05).After treatment with icariin,the neural function score was decreased significantly.The degree of neuronal necrosis in the peri-ischemic area was significantly reduced,and the number of intact neurons was significantly increased.IL-1 β and IL-18-positive cells were decreased significantly.Expressions of NLRP3,ASC,and Caspase-1 were significantly decreased(P<0.01,P<0.05).Conclusions Treatment of cerebral ischemia-reperfusion injury by icariin may be related to regulation of the NLRP3 inflammasome.
5.Improvement and Application of Sampling Device for Adsorption and Concentration of Volatile Organic Compounds
Xin-Yi GUO ; Man-Man WU ; Chao MA ; Jia-Xin CHEN ; Da-Jun LIN ; Zhen ZHOU ; Ying-Nan GAO ; Wei GAO
Chinese Journal of Analytical Chemistry 2024;52(10):1487-1495,中插14-中插24
An adsorption and concentration sampling device for volatile organic compounds(VOCs)was designed in this work,which improved the long-term monitoring stability of the online monitoring system for VOC adsorption and concentration,and solved the issue of rapid attenuation of responses toward higher carbon compounds.The designed VOC desorption device achieved an average heating rate of 40 ℃/s,with a relative standard deviation(RSD)of 0.4%.Quantitative analysis of mixture of 116 kinds of different VOC standard gases was performed,and the test results showed that the qualification rate of standard curves increased significantly from 90%to 99%,the proportion of detection limits below 0.1 nmol/mol improved from 85%to 90%,and the proportion of residual levels in the system below 0.1 nmol/mol also increased from 85%to 90%.The stable monitoring period was extended from 20 d to over 30 d,making it more conducive to long-term unattended monitoring by the developed instrument.
6.Chinese expert consensus on transcatheter tricuspid valve intervention therapy
Chinese College of Cardiovascular Physicians Structural Cardiology Group ; House Heart CHINA ; Wen-Zhi PAN ; Guang-Yuan SONG ; Da-Xin ZHOU ; Yong-Jian WU
Chinese Journal of Interventional Cardiology 2024;32(10):551-561
Tricuspid regurgitation(TR)is a common heart valve disease traditionally treated with surgery,which is invasive and high-risk.Recently,transcatheter tricuspid valve intervention(TTVI)technology has achieved major breakthroughs.It is being promoted internationally and several expert consensus documents have been launched abroad.However,in China,there is still a lack of consensus documents in this regard.In order to promote the safe,standardized and healthy development of this technology,this expert consensus is specially compiled.This consensus will introduce anatomy,epidemiology,classification and pathogenesis of TR,the traditional treatment and TTVI,preoperative evaluation and clinical efficacy endpoints.We sort out ten core viewpoints so that readers can quickly grasp the essence of the consensus.
7.2024 expert consensus on clinical pathway for transcatheter aortic valve replacement in China
Structural Cardiology Committee of Cardiovascular Physicians Branch,Chinese Medical Doctor Association ; Asia Pacific Structural Heart Disease Club ; Guang-Yuan SONG ; Wen-Zhi PAN ; Da-Xin ZHOU ; Yong-Jian WU
Chinese Journal of Interventional Cardiology 2024;32(11):601-617
Transcatheter aortic valve replacement(TAVR)has reached maturity and has entered a stage of steady and stable development in China.From 2017 to 2023,the number of centers conducting TAVR in China has increased from less than 10 to over 600,and the annual implantation volume has increased from hundreds to over 10 000.The 2018 and 2021 editions of the"Expert Consensus on Clinical Pathway for Transcatheter Aortic Valve Replacement in China"played a crucial guiding role during the golden period of TAVR development in China.With significant progress in evidence-based practice,clinical experience,guideline updates,device development,and procedure technique improvements in the TAVR field,especially the important advances in technologies developed from China,protocol optimization based on Chinese clinical practices,it is necessary to update the previous clinical pathway consensus.The new version of the clinical pathway expert consensus has updated the standard procedures for preoperative clinical assessment,perioperative imaging evaluation,standardized procedural processes,comprehensive perioperative management,and postoperative rehabilitation follow-up for TAVR patients.This update aims to further promote the healthy and standardized development of TAVR technology in China and to steadily enhance the medical and scientific research capabilities with this therapeutic technology.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Design and practice of general population cohort study in northeastern China
Hehua ZHANG ; Qing CHANG ; Qijun WU ; Yang XIA ; Shanyan GAO ; Yixiao ZHANG ; Yuan YUAN ; Jing JIANG ; Hongbin QIU ; Jing LI ; Chunming LU ; Chao JI ; Xin XU ; Donghui HUANG ; Huixu DAI ; Zhiying ZHAO ; Xing LI ; Xiaoying LI ; Xiaosong QIN ; Caigang LIU ; Xiaoyu MA ; Xinrui XU ; Da YAO ; Huixin YU ; Yuhong ZHAO
Chinese Journal of Epidemiology 2023;44(1):21-27
In 2016, a national one million general population cohort project was set up in China for the first time in "Precision Medicine Research" Key Project, National Key Research and Development Program of China, which consists of general population cohorts in seven areas in China. As one of the seven major areas in China, northeastern China has unique climate and specific dietary patterns, and population aging is serious in this area. And the burden of chronic and non-communicable diseases ranks tops in China. Therefore, it is of great significance to establish a large general population cohort in northeastern China to explore the area specific exposure factors related to pathogenesis and prognosis of chronic and non-communicable diseases, develop new prevention strategies to reduce the burden of the diseases and improve the population health in northeastern China. In July 2018, the general population cohort study in northeastern China was launched, the study includes questionnaire survey, health examination and blood, urine and stool sample collection and detection in recruited participants. By now, the cohort has covered all age groups, and the baseline data of 115 414 persons have been collected. This paper summarizes the design and practice of the general population cohort study in northeastern China to provide reference for related research in China.
10.Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration.
Zekai WU ; Yuan SHI ; Yueli CUI ; Xin XING ; Liya ZHANG ; Da LIU ; Yutian ZHANG ; Ji DONG ; Li JIN ; Meijun PANG ; Rui-Ping XIAO ; Zuoyan ZHU ; Jing-Wei XIONG ; Xiangjun TONG ; Yan ZHANG ; Shiqiang WANG ; Fuchou TANG ; Bo ZHANG
Protein & Cell 2023;14(5):350-368
Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.
Humans
;
Mice
;
Rats
;
Cell Proliferation
;
Heart/physiology*
;
Mammals
;
Myocardial Infarction/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Pericardium/metabolism*
;
Single-Cell Analysis
;
Zebrafish/metabolism*

Result Analysis
Print
Save
E-mail