1.TLR5 Activation through NF-κB Is a Neuroprotective Mechanism of Postconditioning after Cerebral Ischemia in Mice.
Jaewon JEONG ; Soojin KIM ; Da Sol LIM ; Seo Hea KIM ; Heeju DOH ; So Dam KIM ; Yun Seon SONG
Experimental Neurobiology 2017;26(4):213-226
Postconditioning has been shown to protect the mouse brain from ischemic injury. However, the neuroprotective mechanisms of postconditioning remain elusive. We have found that toll-like receptor 5 (TLR5) plays an integral role in postconditioning-induced neuroprotection through Akt/nuclear factor kappa B (NF-κB) activation in cerebral ischemia. Compared to animals that received 30 min of transient middle cerebral artery occlusion (tMCAO) group, animals that also underwent postconditioning showed a significant reduction of up to 60.51% in infarct volume. Postconditioning increased phospho-Akt (p-Akt) levels and NF-κB translocation to the nucleus as early as 1 h after tMCAO and oxygen-glucose deprivation. Furthermore, inhibition of Akt by Akt inhibitor IV decreased NF-κB promoter activity after postconditioning. Immunoprecipitation showed that interactions between TLR5, MyD88, and p-Akt were increased from postconditioning both in vivo and in vitro. Similar to postconditioning, flagellin, an agonist of TLR5, increased NF-κB nuclear translocation and Akt phosphorylation. Our results suggest that postconditioning has neuroprotective effects by activating NF-κB and Akt survival pathways via TLR5 after cerebral ischemia. Additionally, the TLR5 agonist flagellin can simulate the neuroprotective mechanism of postconditioning in cerebral ischemia.
Animals
;
Brain
;
Brain Ischemia*
;
Flagellin
;
Immunoprecipitation
;
In Vitro Techniques
;
Infarction, Middle Cerebral Artery
;
Mice*
;
Neuroprotection
;
Neuroprotective Agents
;
NF-kappa B
;
Phosphorylation
;
Toll-Like Receptor 5
2.Anti-inflammatory Effect of Glucagon Like Peptide-1 Receptor Agonist, Exendin-4, through Modulation of IB1/JIP1 Expression and JNK Signaling in Stroke.
Soojin KIM ; Jaewon JEONG ; Hye Seon JUNG ; Bokyung KIM ; Ye Eun KIM ; Da Sol LIM ; So Dam KIM ; Yun Seon SONG
Experimental Neurobiology 2017;26(4):227-239
Glucagon like peptide-1 (GLP-1) stimulates glucose-dependent insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors, which block inactivation of GLP-1, are currently in clinical use for type 2 diabetes mellitus. Recently, GLP-1 has also been reported to have neuroprotective effects in cases of cerebral ischemia. We therefore investigated the neuroprotective effects of GLP-1 receptor (GLP-1R) agonist, exendin-4 (ex-4), after cerebral ischemia-reperfusion injury. Transient middle cerebral artery occlusion (tMCAO) was induced in rats by intracerebroventricular (i.c.v.) administration of ex-4 or ex9-39. Oxygen-glucose deprivation was also induced in primary neurons, bEnd.3 cells, and BV-2. Ischemia-reperfusion injury reduced expression of GLP-1R. Additionally, higher oxidative stress in SOD2 KO mice decreased expression of GLP-1R. Downregulation of GLP-1R by ischemic injury was 70% restored by GLP-1R agonist, ex-4, which resulted in significant reduction of infarct volume. Levels of intracellular cyclic AMP, a second messenger of GLP-1R, were also increased by 2.7-fold as a result of high GLP-1R expression. Moreover, our results showed that ex-4 attenuated pro-inflammatory cyclooxygenase-2 (COX-2) and prostaglandin E₂ after MCAO. C-Jun NH₂ terminal kinase (JNK) signaling, which stimulates activation of COX-2, was 36% inhibited by i.c.v. injection of ex-4 at 24 h. Islet-brain 1 (IB1), a scaffold regulator of JNK, was 1.7-fold increased by ex-4. GLP-1R activation by ex-4 resulted in reduction of COX-2 through increasing IB1 expression, resulting in anti-inflammatory neuroprotection during stroke. Our study suggests that the anti-inflammatory action of GLP-1 could be used as a new strategy for the treatment of neuroinflammation after stroke accompanied by hyperglycemia.
Animals
;
Brain Ischemia
;
Cyclic AMP
;
Cyclooxygenase 2
;
Diabetes Mellitus, Type 2
;
Down-Regulation
;
Glucagon*
;
Glucagon-Like Peptide 1
;
Glucagon-Like Peptide-1 Receptor
;
Hyperglycemia
;
Infarction, Middle Cerebral Artery
;
Insulin
;
Mice
;
Neurons
;
Neuroprotection
;
Neuroprotective Agents
;
Oxidative Stress
;
Phosphotransferases
;
Rats
;
Reperfusion Injury
;
Second Messenger Systems
;
Stroke*
3.Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea
Hyundam GU ; Suyoung LEE ; Sol KIM ; Hye-Lim JANG ; Da-Woon CHOI ; Kyu Seok KIM ; Yu Ri SHIN ; Dae Young CHEUNG ; Bo-In LEE ; Jin Il KIM ; Han Hee LEE
Clinical Endoscopy 2024;57(6):790-797
Background/Aims:
Colonic stenting plays a vital role in the management of acute malignant colonic obstruction. The increasing use of self-expandable metal stents (SEMS) and the diverse challenges posed by colonic obstruction at various locations underscore the importance of effective training for colonic stent placement.
Methods:
All the components of the simulator were manufactured using silicone molding techniques in conjunction with three-dimensional (3D) printing. 3D images sourced from computed tomography scans and colonoscopy images were converted into a stereolithography format. Acrylonitrile butadiene styrene copolymers have been used in fused deposition modeling to produce moldings.
Results:
The simulator replicated the large intestine from the rectum to the cecum, mimicking the texture and shape of the human colon. It enables training for colonoscopy insertion, cecum intubation, loop reduction, and stenting within stenotic areas. Interchangeable stenotic modules for four sites (rectum, sigmoid colon, descending colon, and ascending colon) were easily assembled for training. These modules integrate tumor contours and blood vessel structures with a translucent center, allowing real-time visualization during stenting. Successful and repeatable demonstrations of stent insertion and expansion using the reusable SEMS were consistently achieved.
Conclusions
This innovative simulator offers a secure colonic stenting practice across various locations, potentially enhancing clinical outcomes by improving operator proficiency during actual procedures.
4.Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea
Hyundam GU ; Suyoung LEE ; Sol KIM ; Hye-Lim JANG ; Da-Woon CHOI ; Kyu Seok KIM ; Yu Ri SHIN ; Dae Young CHEUNG ; Bo-In LEE ; Jin Il KIM ; Han Hee LEE
Clinical Endoscopy 2024;57(6):790-797
Background/Aims:
Colonic stenting plays a vital role in the management of acute malignant colonic obstruction. The increasing use of self-expandable metal stents (SEMS) and the diverse challenges posed by colonic obstruction at various locations underscore the importance of effective training for colonic stent placement.
Methods:
All the components of the simulator were manufactured using silicone molding techniques in conjunction with three-dimensional (3D) printing. 3D images sourced from computed tomography scans and colonoscopy images were converted into a stereolithography format. Acrylonitrile butadiene styrene copolymers have been used in fused deposition modeling to produce moldings.
Results:
The simulator replicated the large intestine from the rectum to the cecum, mimicking the texture and shape of the human colon. It enables training for colonoscopy insertion, cecum intubation, loop reduction, and stenting within stenotic areas. Interchangeable stenotic modules for four sites (rectum, sigmoid colon, descending colon, and ascending colon) were easily assembled for training. These modules integrate tumor contours and blood vessel structures with a translucent center, allowing real-time visualization during stenting. Successful and repeatable demonstrations of stent insertion and expansion using the reusable SEMS were consistently achieved.
Conclusions
This innovative simulator offers a secure colonic stenting practice across various locations, potentially enhancing clinical outcomes by improving operator proficiency during actual procedures.
5.Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea
Hyundam GU ; Suyoung LEE ; Sol KIM ; Hye-Lim JANG ; Da-Woon CHOI ; Kyu Seok KIM ; Yu Ri SHIN ; Dae Young CHEUNG ; Bo-In LEE ; Jin Il KIM ; Han Hee LEE
Clinical Endoscopy 2024;57(6):790-797
Background/Aims:
Colonic stenting plays a vital role in the management of acute malignant colonic obstruction. The increasing use of self-expandable metal stents (SEMS) and the diverse challenges posed by colonic obstruction at various locations underscore the importance of effective training for colonic stent placement.
Methods:
All the components of the simulator were manufactured using silicone molding techniques in conjunction with three-dimensional (3D) printing. 3D images sourced from computed tomography scans and colonoscopy images were converted into a stereolithography format. Acrylonitrile butadiene styrene copolymers have been used in fused deposition modeling to produce moldings.
Results:
The simulator replicated the large intestine from the rectum to the cecum, mimicking the texture and shape of the human colon. It enables training for colonoscopy insertion, cecum intubation, loop reduction, and stenting within stenotic areas. Interchangeable stenotic modules for four sites (rectum, sigmoid colon, descending colon, and ascending colon) were easily assembled for training. These modules integrate tumor contours and blood vessel structures with a translucent center, allowing real-time visualization during stenting. Successful and repeatable demonstrations of stent insertion and expansion using the reusable SEMS were consistently achieved.
Conclusions
This innovative simulator offers a secure colonic stenting practice across various locations, potentially enhancing clinical outcomes by improving operator proficiency during actual procedures.