1.Erratum to “National Trends in Hospitalization for Ambulatory Care Sensitive Conditions among Korean Adults between 2008 and 2019” by Park H, et al.(Yonsei Med J 2022 Oct;63(10):948-955)
Hyeki PARK ; Hye Seung SON ; Da Won JUNG ; Hyejin LEE ; Jin Yong LEE
Yonsei Medical Journal 2023;64(12):751-751
2.Relationship between Sedentary Time and Handgrip Strength in Healthy Korean Women: Korea National Health and Nutrition Examination Survey 2014–2016
Seung-Yeon LEE ; Da-Hye SON ; Yong-Jae LEE
Korean Journal of Family Medicine 2020;41(6):422-426
Background:
This study aimed to examine the association between sitting time and handgrip strength in healthy Korean women.
Methods:
A total of 5,437 participants were included from the Korea National Health and Nutrition Examination Survey 2014–2016. The overall daily sitting time was estimated using health interview surveys, and handgrip strength was assessed using a digital hand dynamometer. The relationship between sitting time and handgrip strength was calculated with a weighted analysis of covariance after adjusting for confounding variables.
Results:
Participants in each age group (19–39, 40–64, ≥65 years) were divided into three categories according to sitting time: ≤5, 6–9, and ≥10 h/d. The handgrip strength tended to decrease as sitting time increased after adjusting for age, body mass index, alcohol intake, cigarette smoking, resistance exercise, aerobic physical activity, household income, education level, hypertension, diabetes mellitus, dyslipidemia, and depression in all age groups (all P<0.001).
Conclusion
We observed the inverse relationship between sitting time and handgrip strength in healthy Korean women.
3.Medial Temporal Atrophy Alone is Insufficient to Predict Underlying Alzheimer’s Disease Pathology
Hyo Eun JEONG ; Da Hye SHIN ; Duk-Chul LEE
Korean Journal of Family Medicine 2020;41(5):352-358
Background:
The medial temporal region is the earliest affected structure in patients with Alzheimer’s disease (AD), and its atrophy is known as the hallmark of AD. This study aimed to investigate the value of medial temporal atrophy (MTA) for detecting 18F-florbetaben positron emission tomography (PET)-proven AD pathology.
Methods:
We retrospectively enrolled 265 subjects complaining of cognitive decline at a dementia outpatient clinic from March 2015 to December 2017. All subjects underwent brain magnetic resonance imaging, 18F-fluorodeoxyglucose PET, and 18F-florbetaben PET at baseline. We performed multivariable logistic regression analyses on variables including age, sex, years of education, white matter hyperintensities, apolipoprotein E (APOE) genotype, and memory composite scores in various combinations to investigate whether MTA was indicative of underlying AD pathology.
Results:
Our sample population of 265 patients comprised 121 with AD-related cognitive impairment, 42 with Lewy bodies-related cognitive impairment, 32 with vascular cognitive impairment, and 70 with other or undetermined pathologies. In the multivariable logistic regression analyses, MTA was not an independent predictor of underlying AD pathology (P>0.200). The predictive power of underlying AD-related cognitive impairment significantly increased when multiple variables including APOE genotype and memory composite scores were considered together (area under the curve >0.750).
Conclusion
Our results suggest that MTA alone may be insufficient to accurately predict the presence of AD pathology. It is necessary to comprehensively consider various other factors such as APOE genotype and a detailed memory function to determine whether the patient is at high risk of AD.
4.Recent Advances in Anti-Aging Medicine
Da Hye SON ; Woo Jin PARK ; Yong Jae LEE
Korean Journal of Family Medicine 2019;40(5):289-296
A rapidly aging population in Korea has led to increased attention in the field of anti-aging medicine. The purpose of anti-aging medicine is to slow, stop, or reverse the aging process and its associated effects, such as disability and frailty. Anti-aging medicine is emerging as a growing industry, but many supplements or protocols are available that do not have scientific evidence to support their claims. In this review, the mechanisms of action and the clinical implications of anti-aging interventions were examined and explained. Calorie restriction mimetics define compounds that imitate the outcome of calorie restriction, including an activator of AMP protein kinase (metformin), inhibitor of growth hormone/insulin-like growth factor-1 axis (pegvisomant), inhibitor of mammalian target of rapamycin (rapamycin), and activator of the sirtuin pathway (resveratrol). Hormonal replacement has also been widely used in the elderly population to improve their quality of life. Manipulating healthy gut microbiota through prebiotic/probiotics or fecal microbiota transplantation has significant potential in anti-aging medicine. Vitamin D is expected to be a primary anti-aging medicine in the near future due to its numerous positive effects in the elderly population.
Aged
;
Aging
;
Fecal Microbiota Transplantation
;
Gastrointestinal Microbiome
;
Hormone Replacement Therapy
;
Humans
;
Korea
;
Protein Kinases
;
Quality of Life
;
Sirolimus
;
Vitamin D
5.A POLG2 Homozygous Mutation in an Autosomal Recessive Epilepsy Family Without Ophthalmoplegia
Su Jeong LEE ; Sumaira KANWAL ; Da Hye YOO ; Hye Ri PARK ; Byung Ok CHOI ; Ki Wha CHUNG
Journal of Clinical Neurology 2019;15(3):418-420
No abstract available.
Epilepsy
;
Humans
;
Ophthalmoplegia
6.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
7.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
8.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
9.Diagnostic Usefulness of Transrectal Ultrasound Compared with Transvaginal Ultrasound Assessment in Young Korean Women with Polycystic Ovary Syndrome.
Da Eun LEE ; So Yun PARK ; Sa Ra LEE ; Kyungah JEONG ; Hye Won CHUNG
Journal of Menopausal Medicine 2015;21(3):149-154
OBJECTIVES: To determine the diagnostic performance of transrectal ultrasound in virgin patients with polycystic ovary syndrome (PCOS) by receiver operating characteristic (ROC) curve analysis, compared with conventional transvaginal ultrasound assessment. METHODS: Ultrasound examinations were performed in 963 Korean women, with transvaginal transducers in 677 women and transrectal transducers in 286 women at Ewha Womans University Mokdong Hospital. Transvaginal ultrasound examinations were performed in 494 normal control women and 183 PCOS patients according to National Institutes of Health (NIH) PCOS diagnostic criteria. In virgin patients, transrectal ultrasound examinations were performed in 141 normal control women and 145 PCOS patients. ROC curves were calculated for ovarian volume and follicle number. RESULTS: By transvaginal ultrasound examination, the ovarian volume showed an area under the ROC curve (AURC) of 0.838. An ovarian volume decision threshold > 7 cm3 had a sensitivity of 73.0% and a specificity of 84.2% for the diagnosis of PCOS. The follicle number showed an AURC of 0.886. A follicle number decision threshold > or = 9 had a sensitivity of 78.6% and a specificity of 87.2% for the diagnosis of PCOS. By transrectal ultrasound examination, the ovarian volume and the follicle number showed AURCs of 0.815 as same thresholds with a sensitivity of 67.2% and 66.4%, respectively and a specificity of 86.8% each. Ovarian volume and follicle number by transvaginal and transrectal ultrasound assessment had a high diagnostic power for PCOS screening. CONCLUSION: Transrectal ultrasound assessment is as effective as conventional transvaginal ultrasound for the detection of PCOS in virgin patients.
Diagnosis
;
Female
;
Humans
;
Mass Screening
;
National Institutes of Health (U.S.)
;
Polycystic Ovary Syndrome*
;
ROC Curve
;
Sensitivity and Specificity
;
Transducers
;
Ultrasonography*
10.A Large Dominant Myotonia Congenita Family with a V1293I Mutation in SCN4A.
Ki Wha CHUNG ; Da Hye YOO ; Soo Jung LEE ; Byung Ok CHOI ; Sang Soo LEE
Journal of Clinical Neurology 2016;12(4):509-511
No abstract available.
Humans
;
Myotonia Congenita*
;
Myotonia*