1.DNA mismatch repair-related protein loss as a prognostic factor in endometrial cancers.
Masafumi KATO ; Masashi TAKANO ; Morikazu MIYAMOTO ; Naoki SASAKI ; Tomoko GOTO ; Hitoshi TSUDA ; Kenichi FURUYA
Journal of Gynecologic Oncology 2015;26(1):40-45
OBJECTIVE: Recent investigations have revealed DNA mismatch repair (MMR) gene mutations are closely related with carcinogenesis of endometrial cancer; however the impact of MMR protein expression on prognosis is not determined. Correlations between MMR-related protein expression and clinicopathological factors of endometrial cancers are analyzed in the present study. METHODS: A total of 191 endometrial cancer tissues treated between 1990 and 2007 in our hospital were enrolled. Immunoreactions for MSH2, MLH1, MSH6, and PMS2 on tissue microarray specimens and clinicopathological features were analyzed retrospectively. RESULTS: Seventy-six cases (40%) had at least one immunohistochemical alteration in MMR proteins (MMR-deficient group). There were statistically significant differences of histology, International Federation of Gynecology and Obstetrics (FIGO) stage, and histological grade between MMR-deficient group and the other cases (MMR-retained group). Response rate of first-line chemotherapy in evaluable cases was slightly higher in MMR-deficient cases (67% vs. 44%, p=0.34). MMR-deficient cases had significantly better progression-free and overall survival (OS) compared with MMR-retained cases. Multivariate analysis revealed MMR status was an independent prognostic factor for OS in endometrial cancers. CONCLUSION: MMR-related proteins expression was identified as an independent prognostic factor for OS, suggesting that MMR was a key biomarker for further investigations of endometrial cancers.
Adaptor Proteins, Signal Transducing/deficiency/metabolism
;
Adenosine Triphosphatases/deficiency/metabolism
;
Adult
;
Aged
;
Aged, 80 and over
;
Chemotherapy, Adjuvant
;
*DNA Mismatch Repair
;
DNA Repair Enzymes/deficiency/*metabolism
;
DNA-Binding Proteins/deficiency/*metabolism
;
Endometrial Neoplasms/*diagnosis/drug therapy/genetics/pathology
;
Female
;
Humans
;
Kaplan-Meier Estimate
;
Middle Aged
;
MutS Homolog 2 Protein/deficiency/metabolism
;
Neoplasm Proteins/deficiency/metabolism
;
Nuclear Proteins/deficiency/metabolism
;
Prognosis
;
Retrospective Studies
;
Tumor Markers, Biological/*metabolism
2.Utilization of high-resolution melting analysis to screen patients with neonatal intrahepatic cholestasis caused by citrin deficiency.
Peng-qiang WEN ; Guo-bing WANG ; Zhan-ling CHEN ; Dong CUI ; Xiao-hong LIU ; Li-fang YING ; Ping SONG ; Quan YUAN ; Shu-li CHEN ; Jian-xiang LIAO
Chinese Journal of Medical Genetics 2012;29(2):167-171
OBJECTIVETo assess the feasibility of high-resolution melting (HRM) analysis for screening patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD).
METHODSBased on previous studies on SLC25A13 gene in Chinese patients with NICCD, four hotspot mutations (851del4, 1638ins23, IVS6+5G>A and IVS16ins3kb) were selected. Results of the HRM analysis was validated using 50 negative controls and 20 patients with NICCD whose genotypes were confirmed previously by direct sequencing. With the established protocol, 171 suspected patients were enrolled. Samples with abnormal melting curves were further validated by DNA sequencing.
RESULTSHRM analysis can accurately determine the genotypes of all negative controls and patients. The sensitivity and specificity of the technique reached 100% (70/70). The melting curves of samples with the same genotype were highly reproducible. In 171 suspected patients, seven NICCD patients were detected by HRM. Identified mutations have included one case of 851del4 homozygote, one case of IVS6+5G>A heterozygote, 3 cases of 851del4 heterozygotes, one case of [IVS6+5G>A]+[ 851del4] and one case of [1638ins23+IVS16ins3kb]+[1638ins23]. All mutations were subsequently confirmed by DNA sequencing.
CONCLUSIONHRM analysis is a convenient, high-throughput and rapid technique for the screening of NICCD patients.
Anion Transport Proteins ; genetics ; Base Sequence ; Calcium-Binding Proteins ; deficiency ; China ; Citrullinemia ; diagnosis ; genetics ; metabolism ; DNA ; chemistry ; genetics ; Genetic Predisposition to Disease ; Genotype ; Humans ; Mitochondrial Proteins ; genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Denaturation ; Organic Anion Transporters ; deficiency ; Sensitivity and Specificity
3.Liver X receptors and epididymal epithelium physiology.
Fabrice SAEZ ; Eléonore CHABORY ; Rémi CADET ; Patrick VERNET ; Silvère BARON ; Jean-Marc A LOBACCARO ; Joël R DREVET
Asian Journal of Andrology 2007;9(4):574-582
AIMTo investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRalpha, which is more specifically expressed in lipid-metabolising tissues, such as liver, adipose and steroidogenic tissues, and macrophages, whereas LXRbeta is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male mice in which the function of both LXR has been disrupted have fertility disturbances starting at the age of 5 months, leading to complete sterility by the age of 9 months. These defects are associated with epididymal epithelial degeneration in caput segments one and two, and with a sperm midpiece fragility, leading to the presence of isolated sperm heads and flagella when luminal contents are recovered from the cauda epididymidis.
METHODSThe lipid composition of the caput epididymidis of wild-type and LXR-deficient mice was assessed using oil red O staining on tissue cryosections and lipid extraction followed by high performance liquid chromatography or gas chromatography. Gene expression was checked by quantitative real time polymerase chain reaction.
RESULTSUsing LXR-deficient mice, we showed an alteration of the lipid composition of the caput epididymidis as well as a significantly decreased expression of the genes encoding SREBP1c, SCD1 and SCD2, involved in fatty acid metabolism.
CONCLUSIONAltogether, these results show that LXR are important regulators of epididymal function, and play a critical role in the lipid maturation processes occurring during sperm epididymal maturation.
Animals ; DNA Primers ; DNA-Binding Proteins ; deficiency ; genetics ; physiology ; Epididymis ; cytology ; physiology ; Epithelial Cells ; physiology ; Fatty Acids ; metabolism ; Homeostasis ; Lipids ; physiology ; Liver X Receptors ; Male ; Mice ; Mice, Knockout ; Orphan Nuclear Receptors ; Polymerase Chain Reaction ; Receptors, Cytoplasmic and Nuclear ; deficiency ; genetics ; physiology
4.Cloning and sequence analysis of SLC25A13 transcripts in human amniocytes.
Zhan-Hui ZHANG ; Xin-Jing ZHAO ; Yuan-Zong SONG ; Xiao-Mei TANG ; Qing-Bing ZHA
Chinese Journal of Contemporary Pediatrics 2012;14(3):221-225
OBJECTIVEThis research intends to amplify the entire coding region sequences of SLC25A13 mRNA which encodes citrin, and to investigate sequence features of the transcripts for this gene in cultured human amniocytes. This study will provide laboratory evidence for prenatal diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) at mRNA level.
METHODSOne amniocyte sample was collected from a pregnant woman who underwent prenatal diagnosis of citrin deficiency and whose fetus has proven a carrier of 851del4 mutation by genomic DNA analysis. Another amniocyte sample, as a control, was from a fetus without family history of citrin deficiency. Total RNA was extracted from cultured amniocytes, cDNA was synthesized, and then nested-PCR was performed to amplify the entire coding region sequences of SLC25A13. The PCR products were cloned and analyzed by sequencing.
RESULTSThe entire coding region of SLC25A13 gene was successful amplified from two cultured human amniocytes. The splice variant of SLC25A13, SLCA (normal mRNA), was identified in the two samples. SLCB (CAG insertion between exon 9-10) was identified in the control. SLCC (exon 5-11 skipping), but not transcriptional product from the allele with 851del4 mutation, was identified in the 851del4 mutation carrier.
CONCLUSIONSThis study demonstrated that the entire coding region of SLC25A13 cDNA can be successfully amplified from two cultured human amniocytes, and revealed exon 5-11 skipping as a novel SLC25A13 transcript. Normal mRNA predominated in the transcripts in normal control and 851del4 mutation carrier, suggesting that the two fetuses were not at risk for NICCD. These SLC25A13 transcription features provided laboratory evidence for prenatal diagnosis of NICCD.
Amniotic Fluid ; cytology ; metabolism ; Calcium-Binding Proteins ; deficiency ; Cholestasis, Intrahepatic ; diagnosis ; Cloning, Molecular ; Female ; Humans ; Mitochondrial Membrane Transport Proteins ; genetics ; Organic Anion Transporters ; deficiency ; Polymerase Chain Reaction ; Pregnancy ; Prenatal Diagnosis ; methods ; RNA, Messenger ; analysis ; Sequence Analysis, DNA ; Transcription, Genetic
5.Clinical investigation and mutation analysis of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia.
Peng-qiang WEN ; Guo-bing WANG ; Zhan-ling CHEN ; Xiao-hong LIU ; Dong CUI ; Yue SHANG ; Cheng-rong LI
Chinese Journal of Medical Genetics 2013;30(6):649-653
OBJECTIVETo analyze the clinical features and SLC25A13 gene mutations of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia.
METHODSThe patient was subjected to physical examination and routine laboratory tests. Blood amino acids and acylcarnitines, and urine organic acids and galactose were analyzed respectively with tandem mass spectrometry and gas chromatographic mass spectrometry. SLC25A13 gene mutation screening was conducted by high resolution melt (HRM) analysis.
RESULTSThe petechiae on the patient's face and platelet count (27×10(9)/L, reference range 100×10(9)/L-300×10(9)/L) supported the diagnosis of immunologic thrombocytopenic purpura (ITP). Laboratory tests found that the patient have abnormal coagulation, cardiac enzyme, liver function and liver enzymes dysfunction. Tandem mass spectrometry also found methionine to be increased (286 μmol/L, reference ranges 8-35 μmol/L). The patient did not manifest any galactosemia, citrullinemia and tyrosinemia. Analysis of SLC25A13 gene mutation found that the patient has carried IVS16ins3kb, in addition with abnormal HRM result for exon 6. Direct sequencing of exon 6 revealed a novel mutation c.495delA. The same mutation was not detected in 100 unrelated healthy controls. Further analysis of her family has confirmed that the c.495delA mutation has derived from her farther, and that the IVS16ins3kb was derived from her mother.
CONCLUSIONThe clinical features and metabolic spectrum of citrin deficiency can be variable. The poor prognosis and severity of clinical symptoms of the patient may be attributed to the novel c.495delA mutation.
Amino Acid Metabolism, Inborn Errors ; genetics ; pathology ; Calcium-Binding Proteins ; deficiency ; genetics ; DNA Mutational Analysis ; methods ; Female ; Glycine N-Methyltransferase ; deficiency ; genetics ; Humans ; Infant ; Mitochondrial Membrane Transport Proteins ; genetics ; Organic Anion Transporters ; deficiency ; genetics ; Pedigree ; Purpura ; genetics ; pathology ; Seizures ; genetics ; pathology
6.SLC25A13 gene mutation analysis in a pedigree of neonatal intrahepatic cholestasis caused by citrin deficiency.
Yuan-Zong SONG ; Miharu USHIKAI ; Jian-sheng SHENG ; Mikio IIJIMA ; Keiko KOBAYASHI
Chinese Journal of Pediatrics 2007;45(6):408-412
OBJECTIVENeonatal intrahepatic cholestasis caused by citrin deficiency (NICCD, MIM#605814) is an inherited metabolic disease resulting from mutations of the gene SLC25A13, which encodes citrin, a liver-type mitochondrial aspartate-glutamate carrier. Mutation analysis is necessary for definitive diagnosis of NICCD patients. So far (March, 2007), 36 kinds of mutation, including 7 nonsense, 10 missense, 11 abnormal splicing, 4 insertion and 4 deletion, have been identified by Kobayashi's group, who cloned the gene in Kagoshima, Japan. To date, most of the NICCD patients reported in the world are Japanese. This study aimed to explore the gene diagnosis procedure of two known SLC25A13 mutations in a pedigree with an NICCD patient from China.
METHODSDNA was extracted from dried blood spots collected with filter papers from the proband and other 9 members in a NICCD pedigree from China, and then PCR amplification and agarose gel electrophoresis were performed, revealing two mutations preliminarily, which were further proved by Genescan, a procedure established in our laboratory already. Furthermore, the positions and characteristics of the mutations were finally confirmed by DNA sequencing.
RESULTSThe proband is a compound heterozygote of two mutations, 851-854del in exon 9 and 1638-1660dup in exon 16 of SLC25A13 gene. His mother and brother carry the former mutation, which predicts a frameshift and introduction of a stop codon at position 286, while his father, one aunt and her son carry the latter, resulting in a frameshift at codon 554, and introducing a stop codon at position 570.
CONCLUSIONA deletion mutation 851-854del in exon 9 and an insertion mutation 1638-1660dup in exon 16 of SLC25A13 gene were identified in the pedigree, providing reliable evidences for both diagnostic confirmation of the patient and the genetic counseling from other members in the pedigree.
Calcium-Binding Proteins ; deficiency ; genetics ; metabolism ; China ; Cholestasis ; etiology ; genetics ; Cholestasis, Intrahepatic ; genetics ; metabolism ; Citrullinemia ; complications ; genetics ; DNA Mutational Analysis ; Genetic Testing ; Hepatocytes ; Humans ; Infant ; Japan ; Liver Diseases ; genetics ; Male ; Membrane Transport Proteins ; Mitochondrial Membrane Transport Proteins ; genetics ; Mutation ; Organic Anion Transporters ; deficiency ; genetics ; Pedigree ; Urea Cycle Disorders, Inborn ; genetics
7.E2FBP1 antagonizes the p16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability.
Yayoi FUKUYO ; Akiko TAKAHASHI ; Eiji HARA ; Nobuo HORIKOSHI ; Tej K PANDITA ; Takuma NAKAJIMA
International Journal of Oral Science 2011;3(4):200-208
Cellular senescence is an irreversible cell cycle arrest triggered by the activation of oncogenes or mitogenic signaling as well as the enforced expression of tumor suppressors such as p53, p16(INK4A) and promyelocytic leukemia protein (PML) in normal cells. E2F-binding protein 1 (E2FBP1), a transcription regulator for E2F, induces PML reduction and suppresses the formation of PML-nuclear bodies, whereas the down-regulation of E2FBP1 provokes the PML-dependent premature senescence in human normal fibroblasts. Here we report that the depletion of E2FBP1 induces the accumulation of PML through the Ras-dependent activation of MAP kinase signaling. The cellular levels of p16(INK4A) and p53 are elevated during premature senescence induced by depletion of E2FBP1, and the depletion of p16(INK4A), but not p53 rescued senescent cells from growth arrest. Therefore, the premature senescence induced by E2FBP1 depletion is achieved through the p16(INK4A)-Rb pathway. Similar to human normal fibroblasts, the growth inhibition induced by E2FBP1 depletion is also observed in human tumor cells with intact p16(INK4A) and Rb. These results suggest that E2FBP1 functions as a critical antagonist to the p16(INK4A)-Rb tumor suppressor machinery by regulating PML stability.
Cell Line, Tumor
;
Cells, Cultured
;
Cellular Senescence
;
genetics
;
physiology
;
Cyclin-Dependent Kinase Inhibitor p16
;
antagonists & inhibitors
;
genetics
;
physiology
;
DNA-Binding Proteins
;
deficiency
;
genetics
;
physiology
;
Down-Regulation
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Intranuclear Inclusion Bodies
;
metabolism
;
MAP Kinase Signaling System
;
Nuclear Proteins
;
genetics
;
metabolism
;
physiology
;
Promyelocytic Leukemia Protein
;
Protein Isoforms
;
Protein Stability
;
RNA Interference
;
Retinoblastoma Protein
;
antagonists & inhibitors
;
genetics
;
physiology
;
Transcription Factors
;
deficiency
;
genetics
;
metabolism
;
physiology
;
Transfection
;
Tumor Suppressor Protein p53
;
physiology
;
Tumor Suppressor Proteins
;
genetics
;
metabolism
;
physiology
;
Ubiquitination
;
ras Proteins
;
metabolism
8.IL-21 accelerates xenogeneic graft-versus-host disease correlated with increased B-cell proliferation.
Xiaoran WU ; Yi TAN ; Qiao XING ; Shengdian WANG
Protein & Cell 2013;4(11):863-871
Graft-versus-host disease (GVHD) is a prevalent and potential complication of hematopoietic stem cell transplantation. An animal model, xenogeneic GVHD (X-GVHD), that mimics accurately the clinical presentation of GVHD would provide a tool for investigating the mechanism involved in disease pathogenesis. Murine models indicated that inhibiting IL-21 signaling was a good therapy to reduce GVHD by impairing T cell functions. We sought to investigate the effect of exogenous human IL-21 on the process of X-GVHD. In this study, human IL-21 was expressed by hydrodynamic gene delivery in BALB/c-Rag2⁻/⁻ IL-2RΓc⁻/⁻ (BRG) immunodeficient mice which were intravenously transplanted human peripheral blood mononuclear cells (hPBMCs). We found that human IL-21 exacerbated X-GVHD and resulted in rapid fatality. As early as 6 days after hPBMCs transplanted to BRG mice, a marked expansion of human CD19⁺ B cells, but not T cells, was observed in spleen of IL-21-treated mice. Compared with control group, IL-21 induced robust immunoglobulin secretion, which was accompanied by increased accumulation of CD19⁺ CD38(high) plasma cells in spleen. In addition, we demonstrated that B-cell depletion was able to ameliorate X-GVHD. These results are the first to find in vivo expansion and differentiation of human B cells in response to IL-21, and reveal a correlation between the expansion of B cells and the exacerbation of xenogeneic GVHD. Our findings show evidence of the involvement of B cells in X-GVHD and may have implications in the treatment of the disease.
Animals
;
B-Lymphocytes
;
immunology
;
metabolism
;
pathology
;
Cell Differentiation
;
Cell Proliferation
;
DNA-Binding Proteins
;
deficiency
;
Female
;
Graft vs Host Disease
;
blood
;
genetics
;
immunology
;
metabolism
;
Heterografts
;
immunology
;
Humans
;
Immunoglobulin G
;
metabolism
;
Immunoglobulin M
;
metabolism
;
Interleukins
;
genetics
;
immunology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
genetics