1.DNA Extraction from Protozoan Oocysts/Cysts in Feces for Diagnostic PCR.
The Korean Journal of Parasitology 2014;52(3):263-271
PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp(R) DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 microl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, approximately 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis.
DNA, Protozoan/*isolation & purification
;
Feces/*parasitology
;
Humans
;
Molecular Diagnostic Techniques/*methods
;
Polymerase Chain Reaction/*methods
;
Protozoan Infections/*diagnosis
;
Sensitivity and Specificity
;
Specimen Handling/*methods
;
Spores, Protozoan/*genetics
2.20-year search on molecular markers of Leishmania isolates from different Kala-azar foci in China to confirm whether genetic fingerprints of Kala-azar pathogens correlate with disease types.
Ying MA ; Lingyi BU ; Xiaosu HUA
Journal of Biomedical Engineering 2011;28(5):997-1000
Leishmaniasis (Kala-azar) from different endemic regions of China expresses different clinic and epidemiological features, and traditionally is classified as hilly, plain and desert types/foci. We concentrated our review on whether the pathogens from those foci were different at molecular level, if so, whether there are were molecular markers readily identifiable by molecular technologies. This was a review of a 20-year search for such markers by using kinetoplastic DNA (kDNA), nDNA hybridization, PCR-SSCP, RAPD and sequence analysis of SSU rDNA variable regions and LACK gene. The results showed that heterogeneities at molecular level exist in Leishmania isolated from different foci of China, which could be used as markers for different types of Leishmaniasis in China.
China
;
DNA Fingerprinting
;
DNA, Protozoan
;
analysis
;
genetics
;
Genotype
;
Humans
;
Leishmania donovani
;
classification
;
genetics
;
isolation & purification
;
Leishmaniasis, Visceral
;
classification
;
parasitology
;
Mutation
3.Molecular Characterization of Various Trichomonad Species Isolated from Humans and Related Mammals in Indonesia.
Mudyawati KAMARUDDIN ; Masaharu TOKORO ; Md Moshiur RAHMAN ; Shunsuke ARAYAMA ; Anggi P N HIDAYATI ; Din SYAFRUDDIN ; Puji B S ASIH ; Hisao YOSHIKAWA ; Ei KAWAHARA
The Korean Journal of Parasitology 2014;52(5):471-478
Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species.
Animals
;
DNA, Protozoan/genetics
;
DNA, Ribosomal Spacer/genetics
;
Humans
;
Indonesia/epidemiology
;
*Mammals
;
Protozoan Infections/epidemiology/*parasitology
;
RNA, Protozoan/genetics
;
RNA, Ribosomal, 18S/genetics
;
Species Specificity
;
Trichomonadida/*classification/*genetics/isolation & purification
4.Evolution of Genetic Polymorphisms of Plasmodium falciparum Merozoite Surface Protein (PfMSP) in Thailand.
Jiraporn KUESAP ; Wanna CHAIJAROENKUL ; Kanchanok KETPRATHUM ; Puntanat TATTIYAPONG ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2014;52(1):105-109
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Antigens, Protozoan/*genetics
;
DNA, Protozoan/genetics
;
Evolution, Molecular
;
Humans
;
Malaria, Falciparum/parasitology
;
Merozoite Surface Protein 1/*genetics
;
Plasmodium falciparum/*classification/*genetics/isolation & purification
;
Polymerase Chain Reaction
;
*Polymorphism, Genetic
;
Protozoan Proteins/*genetics
;
Thailand
6.PCR Diagnosis of Entamoeba histolytica Cysts in Stool Samples.
Joung Ho MOON ; Shin Hyeong CHO ; Jae Ran YU ; Won Ja LEE ; Hyeng Il CHEUN
The Korean Journal of Parasitology 2011;49(3):281-284
Amebiasis is a protozoan disease caused by Entamoeba histolytica and a potential health threat in areas where sanitation and hygiene are inappropriate. Highly sensitive PCR methods for detection of E. histolytica in clinical and environmental samples are extremely useful to control amebiasis and to promote public health. The present study compared several primer sets for small subunit (SSU) rDNA and histone genes of E. histolytica cysts. A 246 bp of the SSU rDNA gene of pure cysts contained in phosphate-buffered saline (PBS) and in stool samples was successfully amplified by nested PCR, using the 1,147-246 bp primer set, of the primary PCR products which were pre-amplified using the 1,147 bp primer as the template. The detection limit of the nested PCR using the 1,147-246 primer set was 10 cysts in both groups (PBS and stool samples). The PCR to detect histone gene showed negative results. We propose that the nested PCR technique to detect SSU rDNA can be used as a highly sensitive genetic method to detect E. histolytica cysts in stool samples.
DNA Primers/genetics
;
DNA, Protozoan/genetics
;
DNA, Ribosomal/genetics
;
Entamoeba histolytica/genetics/*isolation & purification
;
Entamoebiasis/*diagnosis
;
Histones/genetics
;
Humans
;
Molecular Diagnostic Techniques/*methods
;
Parasitology/*methods
;
Polymerase Chain Reaction/*methods
;
Protozoan Proteins/genetics
;
Sensitivity and Specificity
7.Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal.
Andre ALMEIDA ; Maria Joao MOREIRA ; Sonia SOARES ; Maria de Lurdes DELGADO ; Joao FIGUEIREDO ; Elisabete SILVA ; Antonio CASTRO ; Jose Manuel Correida Da COSA
The Korean Journal of Parasitology 2010;48(1):43-48
Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and beta,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.
Animals
;
Cryptosporidium/*isolation & purification
;
Cytoskeletal Proteins/genetics
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal/chemistry/genetics
;
Genes, rRNA
;
Giardia lamblia/*isolation & purification
;
Humans
;
Molecular Sequence Data
;
Polymerase Chain Reaction
;
Portugal
;
Protozoan Proteins/genetics
;
RNA, Protozoan/genetics
;
RNA, Ribosomal, 18S/genetics
;
Risk Assessment
;
Sequence Analysis, DNA
;
Water/*parasitology
8.Multiplex PCR Detection of Waterborne Intestinal Protozoa; Microsporidia, Cyclospora, and Cryptosporidium.
Seung Hyun LEE ; Migyo JOUNG ; Sejoung YOON ; Kyoungjin CHOI ; Woo Yoon PARK ; Jae Ran YU
The Korean Journal of Parasitology 2010;48(4):297-301
Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 101 to 102 oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.
Cryptosporidium/*isolation & purification
;
Cyclospora/*isolation & purification
;
DNA Primers/genetics
;
DNA Restriction Enzymes/metabolism
;
DNA, Protozoan/genetics/metabolism
;
Humans
;
Microsporidia/*isolation & purification
;
Parasitology/*methods
;
Polymerase Chain Reaction/*methods
;
Polymorphism, Restriction Fragment Length
;
Sensitivity and Specificity
;
Water/*parasitology
9.Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran.
Ali Reza CHAVSHIN ; ; Mohammad Ali OSHAGHI ; Hasan VATANDOOST ; Ahmad Ali HANAFI-BOJD ; Ahmad RAEISI ; Fatemeh NIKPOOR
Asian Pacific Journal of Tropical Biomedicine 2014;4(1):47-51
OBJECTIVETo identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran.
METHODSWild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested-PCR method.
RESULTSResults showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples.
CONCLUSIONSPresence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.
Animals ; Anopheles ; genetics ; parasitology ; DNA, Mitochondrial ; genetics ; DNA, Protozoan ; genetics ; Eggs ; classification ; parasitology ; Female ; Iran ; Male ; Parasite Load ; Plasmodium ; genetics ; isolation & purification ; Polymerase Chain Reaction ; Sporozoites
10.Internal Amplification Control for a Cryptosporidium Diagnostic PCR: Construction and Clinical Evaluation.
Yousry HAWASH ; M M GHONAIM ; Ayman S AL-HAZMI
The Korean Journal of Parasitology 2015;53(2):147-154
Various constituents in clinical specimens, particularly feces, can inhibit the PCR assay and lead to false-negative results. To ensure that negative results of a diagnostic PCR assay are true, it should be properly monitored by an inhibition control. In this study, a cloning vector harboring a modified target DNA sequence (approximately375 bp) was constructed to be used as a competitive internal amplification control (IAC) for a conventional PCR assay that detects approximately550 bp of the Cryptosporidium oocyst wall protein (COWP) gene sequence in human feces. Modification of the native PCR target was carried out using a new approach comprising inverse PCR and restriction digestion techniques. IAC was included in the assay, with the estimated optimum concentration of 1 fg per reaction, as duplex PCR. When applied on fecal samples spiked with variable oocysts counts, approximately2 oocysts were theoretically enough for detection. When applied on 25 Cryptosporidium-positive fecal samples of various infection intensities, both targets were clearly detected with minimal competition noticed in 2-3 samples. Importantly, both the analytical and the diagnostic sensitivities of the PCR assay were not altered with integration of IAC into the reactions. When tried on 180 randomly collected fecal samples, 159 were Cryptosporidium-negatives. Although the native target DNA was absent, the IAC amplicon was obviously detected on gel of all the Cryptosporidium-negative samples. These results imply that running of the diagnostic PCR, inspired with the previously developed DNA extraction protocol and the constructed IAC, represents a useful tool for Cryptosporidium detection in human feces.
Cryptosporidiosis/*diagnosis/*parasitology
;
Cryptosporidium/genetics/*isolation & purification
;
DNA Primers/genetics
;
DNA, Protozoan/genetics
;
Feces/parasitology
;
Humans
;
Polymerase Chain Reaction/methods/*standards
;
Reference Standards