1.Utilizing tabacco genomic DNA to construct nearly random peptide libraries.
Su-Can MA ; Hai-Ming HUANG ; You-He GAO
Chinese Journal of Biotechnology 2005;21(2):332-335
We developed a novel method for constructing nearly random peptide library. Genomic DNAs extracted from tissue or cells of large genome species were digested with frequent cutter to produce short DNA fragments. These short fragments can be considered nearly random. Nearly random peptide libraries can be constructed by cloning the short fragments into appropriate expression vectors and transformation into host cells. Genomic DNA from one species can be digested with different restriction enzymes and ligated to different reading frames to produce several different libraries. In this study, we digested tobacco genomic DNA with two enzymes and cloned into three different reading frames to make totally six nearly random peptide libraries.
DNA, Plant
;
genetics
;
Genome, Plant
;
genetics
;
Peptide Library
;
Tobacco
;
genetics
2.DNA barcoding identification of original plants of a rare medicinal material Resina Draconis and related Dracaena species.
Yue ZHANG ; Mei-Fang SONG ; Hai-Tao LI ; Hui-Fang SUN ; Zhong-Lian ZHANG
China Journal of Chinese Materia Medica 2021;46(9):2173-2181
Resina Draconis, a rare and precious traditional medicine in China, is known as the "holy medicine for promoting blood circulation". According to the national drug standard, it's derived from the resin extracted from the wood of Dracaena cochinchinensis, a Liliaceae plant. In addition, a variety of Dracaena species all over the world can form red resins, and there is currently no molecular identification method that can efficiently identify the origin of Dracaena medicinal materials. In this study, seven species of Dracaena distributed in China were selected as the research objects. Four commonly used DNA barcodes(ITS2, matK, rbcL and psbA-trnH), and four highly variable regions(trnP-psaJ, psbK-psbI, trnT-trnL, clpP) in chloroplast genome were used to evaluate the identification efficiency of Dracaena species. The results showed that clpP sequence fragment could accurately identify seven species of Dracaena plants. However, due to the long sequence of clpP fragment, there were potential problems in the practical application process. We found that the combined fragment "psbK-psbI+ trnP-psaJ" can also be used for accurate molecular identification of the Resina Draconis origin plants and relative species of Dracaena, which were both relatively short sequences in the combined fragment, showing high success rates of amplification and sequencing. Therefore, the "psbK-psbI+ trnP-psaJ" combined fragment can be used as the DNA barcode fragments for molecular identification of Resina Dracon's origin plants and relative species of Dracaena. Research on the identification of Dracaena species, the results of this study can be used to accurately identify the original material of Resina Draconis, and providing effective means for identification, rational development and application of Resina Draconis base source.
China
;
DNA Barcoding, Taxonomic
;
DNA, Plant/genetics*
;
Dracaena/genetics*
;
Plants
;
Resins, Plant
;
Sequence Analysis, DNA
3.Genetic relationships of Atractylodes plants.
Xiao-Xing ZOU ; Lu-Qi HUANG ; Guang-Hong CUI ; Qing-Jun YUAN ; Yong PENG ; Yong LIU ; Pei-Gen XIAO
Acta Pharmaceutica Sinica 2009;44(6):680-686
The phylogenetic relationships of the genus Atractylodes DC. was analyzed using the nuclear ribosomal ITS and three chloroplast fragments, including atpB-rbcL, psbB-psbF and trnL-trnF intergenic spacer (IGS) sequences. Phylogenetic analyses revealed that A. lancea subsp. luotianensis and A. lancea, A. chinensis var. liaotungensis and A. coreana form monophyletic terminal clade, separately. The trees, within each the pairwise genetic distances, did not support Hu's classification. Authors suggested that A. lancea Subsp. luotianensis should be included in A. lancea rather than be treated as a separate subspecies. A. carlinoides was placed in the basal position of Atractylodes, which had a distant relationship with the others of the genus. The results lead us to suggest that A. chinensis var. liaotungensis be put into A. coreana, A. chinensis as a subspecies of A. lancea.
Atractylodes
;
classification
;
genetics
;
DNA, Intergenic
;
genetics
;
DNA, Plant
;
genetics
;
Genes, Plant
;
Phylogeny
4.Application of DNA molecular marker technologies in study of medicinal Physalis species.
Shang-Guo FENG ; Yu-Jia ZHU ; Kai-Li JIAO ; Chen-Jia SHEN ; Qi-Cai YING ; Hui-Zhong WANG
China Journal of Chinese Materia Medica 2018;43(4):672-675
As traditional Chinese medicinal herbs, Physalis plants have a variety of pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-cancer effects, and have been used for the treatment of malaria, rheumatism, hepatitis, asthma, and cancer. In addition to the medicinal value, many Physalis species are also the high-grade nutrition health care fruits, can be made canned and candied etc. In the study, the application progress of DNA molecular marker technologies in medicinal Physalis plants in recent years was reviewed, in order to provide an important molecular technical basis for the identification, classification and rational development and protection of medicinal Physalis resources.
DNA, Plant
;
genetics
;
Genetic Markers
;
Physalis
;
genetics
;
Plants, Medicinal
;
genetics
5.Study on identification of Astragali Radix and Hedysari Radix by PCR amplification of specific alleles.
Ping LONG ; Zhan-Hu CUI ; Qian-Quan LI ; Jian-Ping XU ; Chun-Hong ZHANG ; Li-She ZHOU ; Min-Hui LI
China Journal of Chinese Materia Medica 2013;38(16):2581-2585
To explore the new method of discriminating Astragali Radix and Hedysari Radix by using PCR amplification of specific alleles, 30 samples of the different Astragali Radix materials and 28 samples of Hedysari Radix were collected. The total DNA of all samples were extracted, trnL-trnF sequence from Astragali Radix and Hedysari Radix was amplified by PCR and sequenced unidirectionally. These sequences were aligned by using Clustul W. Primer was designed and the PCR reaction systems including annealing temperature, dNTP, etc were optimized. All samples were amplified by PCR with specific primer, DNA from Astragali Radix would be amplified 136 bp, whereas PCR products from all of Hedysari Radix were 323 bp. This method can detect 10% of intentional Hedysari Radix DNA into Astragali Radix. PCR amplification of alleles can be used to identify Astragali Radix and Hedysari Radix successfully and is an efficient molecular marker for authentication of Astragali Radix and Hedysari Radix.
Alleles
;
Astragalus Plant
;
classification
;
genetics
;
DNA Barcoding, Taxonomic
;
DNA, Plant
;
genetics
;
Polymerase Chain Reaction
6.Molecular identification and efficacy analysis of herbs at Orussey Herbal Market, Phnom Penh, Cambodia.
Xue-Ping WEI ; Yu-Qing DONG ; Ting-Yan QIANG ; Wen-Jie LI ; Yi-Chen SONG ; Ben-Gang ZHANG ; Zhao ZHANG ; Theang HUOT ; Hai-Tao LIU ; Yao-Dong QI
China Journal of Chinese Materia Medica 2021;46(24):6312-6322
Cambodia is rich in medicinal plant resources. One hundred and thirty-three medicinal material samples, including the hole herb, root, stem/branch, leaf, flower, fruit, seed, and resin, were collected from the Orussey Herbal Market in Phnom Penh, Cambodia, and then authenticated by ITS and psbA-trnH. A total of 46 samples were identified based on ITS sequences, belonging to 24 families, 40 genera, and 42 species. A total of 100 samples were identified by psbA-trnH sequences to belong to 42 families, 77 genera, and 84 species. A total of 103 samples were identified by two DNA barcodes. According to the morphological characteristics of the medicinal materials, 120 samples classified into 50 species, 86 genera, and 86 families were identified, and the majority of them were from Zingiberaceae, Fabaceae, and Acanthaceae. Such samples have been commonly used in traditional Cambodian medicine, Ayurvedic medicine, Unani medicine, traditional Chinese medicine, and ethnomedicine, but different medical systems focus on different functional aspects of the same medicinal material. The results of this study have demonstrated that DNA barcoding has a significant advantage in identifying herbal products, and this study has provided basic data for understanding the traditional medicinal materials used in Cambodia.
Cambodia
;
DNA Barcoding, Taxonomic
;
DNA, Plant/genetics*
;
Humans
;
Plant Leaves
;
Plants, Medicinal/genetics*
7.Identification of Dendrobii Caulis basing on ITS sequence.
Zi YE ; Ye LU ; Zheng-Tao WANG ; Hong XU ; Zhi-Bi HU
China Journal of Chinese Materia Medica 2014;39(20):3928-3935
Isolation of high-quality genomic DNA from dried and processed crude drug is the key for the DNA identification of Dendrobii Caulis. The DNA extract of Dendrobii Caulis was firstly compared using different method to isolate genomic DNA from dried and processed crude drug, including commercial DNA extracted kit and CTAB method. Using modified CTAB method (extracted from large samples), the genomic DNA was successfully isolated from Dendrobii Caulis, including Huangcao and Fengdou. The ITS regions were amplified using the purified DNA as template, and then cloned and sequenced. These ITS sequences were compared with data from Genbank database and our lab, 14 Dendrobium species and five similar species were identified from "Huangcao" and "Huangcao" slice, while six species and three similar species from "Fengdou" according to their sequence similarity. The study demonstrated that the dried Dendrobii Caulis could be identified using DNA molecular method, which could overcome deficiencies and limitations of traditional identification method and has a certain application prospects.
DNA, Intergenic
;
genetics
;
DNA, Plant
;
genetics
;
Dendrobium
;
classification
;
genetics
;
Sequence Analysis, DNA
8.Molecular identification of Cynomorii herba using ITS2 DNA barcoding.
Dian-Yun HOU ; Jing-Yuan SONG ; Lin-Chun SHI ; Pei YANG ; Shi-Lin CHEN ; Hui YAO
China Journal of Chinese Materia Medica 2013;38(23):4028-4032
OBJECTIVETo identify the Cynomorii Herba and its analogues species using DNA barcoding technique.
METHODTotal genomic DNA extracted from all materials using the DNA extraction kit. The internal transcribed spacer 2 (ITS2) regions were amplified using polymerase chain reaction (PCR), and purified PCR products were sequenced bi-directionally. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner 3.7.1. The Kimura 2-Parameter (K2P) distances and GC content were computed using MEGA 5. 0. Species identification analyses were conducted through the species identification system for traditional Chinese medicine and neighbor-joining (NJ) trees.
RESULTThe ITS2 sequence lengths of Cynomorii Herba were 229 bp. The average intra-specific genetic distances of Cynomorii Herba were 0.003. The average inter-specific genetic distances between Cynomorii Herba and its adulterants species were 0.760. The results showed that the minimum inter-specific divergence is larger than the maximum intra-specific divergence. The species identification system for traditional Chinese medicine and NJ trees results indicated that Cynomorii Herba and its adulterants species can be easily identification.
CONCLUSIONThe ITS2 region is an efficient barcode for identification of Cynomorii Herba, which provide a new technique to ensure clinical safety in utilization of traditional Chinese medicine.
Cynomorium ; classification ; genetics ; DNA Barcoding, Taxonomic ; DNA, Intergenic ; genetics ; DNA, Plant ; genetics ; Polymerase Chain Reaction
9.Comparison of MITE transposons mPing in different rice subspecies.
Ning ZHANG ; Yanan RUAN ; Shanshan WANG ; Yang LIU ; Chen ZHAO ; Jingjing WANG ; Kaixi WANG ; Yanli WANG ; Hongyan WANG
Chinese Journal of Biotechnology 2016;32(9):1264-1272
The mPing family is the first active MITE TE family identified in rice genome. In order to compare the compositions and distributions of mPing family in the genomes of two rice subspecies japonica (cv. Nipponbare) and indica (cv. 93-11), we initially estimated the copy numbers of mPing family in those two subspecies using Southern blot and then confirmed the results by searching homologous copies in each reference genome using Blastn program, which turned out to have 52 and 14 mPing copies in corresponding reference genome, respectively. All mPing members in Nipponbare genome belong to mPing-1, while there are 3 mPing-1 and 11 mPing-2 copies in 93-11 genome. By further investigating the 5-kb flanking sequences of those mPing copies, it was found that 23 and 3 protein-coding genes in Nipponbare and 93-11 genome are residing adjacent to those mPing copies respectively. These results establish the preliminary theoretical foundation for further dissecting the genetic differences of japonica and indica rice in terms of the diversities and distributions of their component mPing.
Animals
;
DNA Transposable Elements
;
genetics
;
Genome, Plant
;
Oryza
;
classification
;
genetics
10.Isolation and identification of a new phytopathogen causing root rot of Rehmannia glutinosa.
Yong LI ; Rong WANG ; Hui-Qing CHEN ; Ruo-Fan WEI ; Kun LIU ; Wan-Long DING
China Journal of Chinese Materia Medica 2021;46(11):2783-2787
Root rot was occurred widely in the production area of Rehmannia glutinosa, and which result in serious influence on the yield and quality of R. glutinosa. In the present work, a new phytopathogen was isolated from roots with root rot symptom in the production area of R. glutinosa. The colony of the pathogen growing on PDA medium was gray-black, the structure of hyphae was compact, the aerial hyphae was less developed, and the back of the colony was black. The hyphae of the pathogen were uneven in size, about 2 to 3 μm in diameter and twined with each other, the conidia of the pathogen were small, nearly round and about 1 μm in diameter. The healthy roots of R. glutinosa were inoculated with the pathogen in vitro, black-brown rot was observed at the inoculate sites after a few days' incubation. The rhizosphere soil of healthy R. glutinosa seedlings were inoculated in vivo, the leaves were wilted and the roots were black-brown rotted after several days' normal culture, the symptoms were consistent with those observed in the field. The genomic DNA of the pathogen was amplified by fungus rDNA-ITS universal primer ITS1/ITS4 and homologous analyzed, the pathogen was in a branch with Heterophoma sp., Phoma sp., P. novae-verbascicola and P. herbarum with the nuclear acid homology of 99.21% to 99.43%. The pathogen shown 97.00% to 98.02% nuclear acid homology with H. verbascicola, H. novae-verbascicola, H. poolensis, P. herbarum, H. sylvatica, H. verbascicola and H. verbasci-densiflori when amplified by the tub2 gene special primer Btub2 fd/Btub4 rd, and H. novae-verbascicola was the highest. The pathogen was in a branch with H. novae-verbascicola when amplified by the lsu gene special primer LR0 R/LR7. Based on the morphological characteristics, nucleotide sequence analysis and Koch's test results, the isolated pathogen causing root rot of R. glutinosa was identified as H. novae-verbascicola. This study is of great significance for the further theoretical research on root rot of R. glutinosa and root rot control in field.
DNA, Ribosomal
;
Fungi/genetics*
;
Plant Leaves
;
Rehmannia/genetics*
;
Seedlings