1.Mechanism of DNA transformation based on mineral nanofibers and method improvement.
Haidong TAN ; Lei WANG ; Jintao LIN ; Zongbao ZHAO
Chinese Journal of Biotechnology 2010;26(10):1379-1384
Sepiolite--an inexpensive, resourceful, fibrous yet inoffensive mineral--made DNA transformation rapid, simple and efficient but the mechanism for DNA transformation was still unclear. Through RNA competition test, we proposed the different transforming mechanisms from the previous report. Meanwhile, we optimized the transforming method and could transfer a colony stored at 4 degrees C for a month with plasmid through sepiolite fibers. The cells could be transformed well without competent cells preparation or incubation process. In sum, this was a novel potential transforming method, which could be explored further if the chemical method and electroporation could not be used.
DNA, Bacterial
;
chemistry
;
genetics
;
Electroporation
;
methods
;
Magnesium Silicates
;
chemistry
;
Mineral Fibers
;
Nanofibers
;
chemistry
;
Transformation, Bacterial
2.Structural insights into glutathione-mediated activation of the master regulator PrfA in Listeria monocytogenes.
Yong WANG ; Han FENG ; Yalan ZHU ; Pu GAO
Protein & Cell 2017;8(4):308-312
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
genetics
;
metabolism
;
Gene Expression Regulation, Bacterial
;
physiology
;
Glutathione
;
metabolism
;
Listeria monocytogenes
;
chemistry
;
genetics
;
metabolism
;
Peptide Termination Factors
;
chemistry
;
genetics
;
metabolism
3.Applications and perspectives of DNA stable-isotope probing in metagenomics: a review.
Wei LIU ; Xiao WEI ; Jing YUAN ; Liuyu HUANG
Chinese Journal of Biotechnology 2011;27(4):539-545
DNA stable-isotope probing (DNA-SIP) is a recently developed method with which the incorporation of stable isotope from a labeled substrate is used to identify the function of microorganisms in the environment. The technique has now been used in conjunction with metagenomics to establish links between microbial identity and particular metabolic functions. The combination of DNA-SIP and metagenomics not only permits the detection of rare low-abundance species from metagenomic libraries but also facilitates the detection of novel enzymes and bioactive compounds. We summarize recent progress in SIP-metagenomic techniques and applications and discuss prospects for this combined approach in environmental microbiology and biotechnology.
Animals
;
DNA
;
genetics
;
DNA Probes
;
chemistry
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Isotope Labeling
;
methods
;
Metagenomics
;
methods
;
Molecular Probe Techniques
;
Sequence Analysis, DNA
;
methods
4.Progress in research on molecular biology and application in dominant antigens ESAT6 and CFP10 of TB vaccine.
Journal of Biomedical Engineering 2012;29(2):392-396
As the dominant antigens, early secreted antigenic target 6 (ESAT6, E6) and culture filtrate protein 10 (CFP10, C10) had once been the focus of tuberculosis (TB) vaccine due to their capability of inducing strong cell immune response in the host. They are also endowed with promising future of prevention against and diagnosis of TB. In this review, we systematically introduce recent research progress of E6 and C10, especially in structure-function, biological characteristics, protein expression and secretion, host immunity and vaccine development, and the prospects of their application are also discussed.
Antigens, Bacterial
;
chemistry
;
genetics
;
immunology
;
Bacterial Proteins
;
chemistry
;
genetics
;
immunology
;
Humans
;
Immunodominant Epitopes
;
immunology
;
Molecular Biology
;
Peptide Fragments
;
chemistry
;
genetics
;
immunology
;
Tuberculosis Vaccines
;
genetics
;
immunology
;
Vaccines, DNA
;
immunology
5.Membrane transfer-based colorimetric DNA detection using enzyme modified gold nanoparticles.
Haiyan LI ; Fengxiang JING ; Qiuyue GAO ; Chunping JIA ; Jiwu CHEN ; Qinghui JIN ; Jianlong ZHAO
Chinese Journal of Biotechnology 2010;26(8):1135-1142
We report here a novel membrane transfer-based DNA detection method, in which alkaline phosphatase labeled gold nanoparticle (AuNP) probes were used as a means to amplify the detection signal. In this method, the capture probe P1, complimentary to the 3' end of target DNA, was immobilized on the chip. The multi-component AuNP probes were prepared by co-coating AuNPs with the detecting probe P2, complimentary to the 5' end of target DNA, and two biotin-labeled signal probes (T10 and T40) with different lengths. In the presence of target DNA, DNA hybridization led to the attachment of AuNPs on the chip surface where specific DNA sequences were located in a "sandwich" format. Alkaline phosphatase was then introduced to the surface via biotine-streptavidin interaction. By using BCIP/NBT alkaline phosphatase color development kit, a colorimetric DNA detection was achieved through membrane transfer. The signal on the membrane was then detected by the naked eye or an ordinary optical scanner. The method provided a detection of limit of 1 pmol/L for synthesized target DNA and 0.23 pmol/L for PCR products of Mycobacterium tuberculosis 16S rDNA when the ratio of probes used was 9:1:1 (T10:T40:P2). The method described here has many desirable advantages including high sensitivity, simple operation, and no need of sophisticated equipment. The method can be potentially used for reliable biosensings.
Colorimetry
;
methods
;
DNA Probes
;
chemistry
;
genetics
;
DNA, Bacterial
;
genetics
;
Gold
;
chemistry
;
Humans
;
Metal Nanoparticles
;
chemistry
;
Mycobacterium tuberculosis
;
isolation & purification
;
Nucleic Acid Hybridization
;
methods
;
Oligonucleotide Array Sequence Analysis
;
methods
6.The study of optimal conditions of electroporation in Escherichia coli DH10B strain.
Yang ZHANG ; Zhi-Qiang WANG ; Bin LIU ; Xiao-Jun ZHANG ; Feng JIANG ; Jian-Hai XIANG
Chinese Journal of Biotechnology 2007;23(2):347-351
In order to optimize the conditions of construction BAC library, the transformation efficiency of E. coli DH10B was studied in this paper. Our data prove much higher competence of electroporation (reaches 2.19 x 10(10) cfu/microg pUC19 DNA) when harvesting the cells between an OD550 of 0.7 - 0.8. Five different electric field strength (from 9 kV/cm to 25 kV/cm) and three different sized plasmid vector DNAs including pUC19 DNA, pECBAC1 DNA and pCLD04541 DNA, as well as three bacterial artificial chromosomes (BACs) ranging from 40 to 190 kb and their mixture were used to discover the transformation efficiency changes under various conditions. Our data show maximum transformation efficiency and optimal electric field strength of plasmid DNAs drop dramatically with increasing size of the DNA. Molecules of 190 kb transform more than 50-fold less well, on a molar basis, than molecules of 40 kb. And the optimal voltage gradient is strongly dependent on the different sized molecules, for instance, pUC19 reaches the highest transformation efficiency at 21 kV/cm, while the 180 kb BAC DNA gets its best efficiency at 13 kV/cm. This paper demonstrates that conditions may be selected which increase the average size of BAC clones generated by electroporation and could be widely applied in large-insert genome library construction.
Chromosomes, Artificial, Bacterial
;
genetics
;
DNA, Bacterial
;
chemistry
;
genetics
;
Electroporation
;
methods
;
Escherichia coli
;
genetics
;
Molecular Weight
;
Plasmids
;
genetics
;
Transformation, Genetic
7.Optimization of Pulsed-field Gel Electrophoresis Procedure for Bacillus cereus.
Hui Juan ZHANG ; Zhuo PAN ; Jian Chun WEI ; En Min ZHANG ; Hong CAI ; Xu Dong LIANG ; Wei LI ;
Biomedical and Environmental Sciences 2016;29(3):233-237
In order to develop a rapid and reliable method for B. cereus genotyping, factors influencing PFGE results, including preparation of bacterial cells embedded in agarose, lysis of embedded cells, enzymatic digestion of intact genomic DNA, and electrophoresis parameters allowing for reproducible and meaningful DNA fragment separation, were controlled. Optimal cellular growth (Luria-Bertani agar plates for 12-18 h) and lysis conditions (4 h incubation with 500 µg/mL lysozyme) produced sharp bands on the gel. Restriction enzyme NotI was chosen as the most suitable. Twenty-two isolates were analyzed by NotI digestion, using three electrophoretic parameters (EPs). The EP-a was optimal for distinguishing between isolates. The optimized protocol could be completed within 40 h which is a significant improvement over the previous methods.
Bacillus cereus
;
genetics
;
isolation & purification
;
Bacteriological Techniques
;
DNA, Bacterial
;
chemistry
;
genetics
;
Electrophoresis, Gel, Pulsed-Field
;
methods
8.Base excision repair synthesis of DNA containing 8-oxoguanine in Escherichia coli.
Yun Song LEE ; Myung Hee CHUNG
Experimental & Molecular Medicine 2003;35(2):106-112
8-oxo-7,8-dihydroguanine (8-oxo-G) in DNA is a mutagenic adduct formed by reactive oxygen species. In Escherichia coli, 2,6-dihydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase (Fpg) removes this mutagenic adduct from DNA. In this report, we demonstrate base excision repair (BER) synthesis of DNA containing 8-oxo-G with Fpg in vitro. Fpg cut the oligonucleotide at the site of 8-oxo-G, producing one nucleotide gap with 3' and 5' phosphate termini. Next, 3' phosphatase(s) in the supernatant obtained by precipitating a crude extract of E. coli with 40% ammonium sulfate, removed the 3' phosphate group at the gap, thus exposing the 3' hydroxyl group to prime DNA synthesis. DNA polymerase and DNA ligase then completed the repair. These results indicate the biological significance of the glycosylase and apurinic/ apyrimidinic (AP) lyase activities of Fpg, in concert with 3' phosphatase(s) to create an appropriately gapped substrate for efficient BER synthesis of DNA containing 8-oxo-G.
DNA Glycosylases/metabolism
;
*DNA Repair
;
DNA, Bacterial/*chemistry/*metabolism
;
DNA-Formamidopyrimidine Glycosylase/metabolism
;
Escherichia coli/*enzymology/*genetics
;
Guanine/*analogs & derivatives/*metabolism
9.Current Issues on Molecular and Immunological Diagnosis of Tuberculosis.
Yonsei Medical Journal 2007;48(3):347-359
aboratory diagnosis of tuberculosis (TB) traditionally relies on smear microscopy and culture of Mycobacterium tuberculosis from clinical samples. With recent advances in technology, there have been numerous efforts to develop new diagnostic tests for TB that overcome the low sensitivity and specificity and long turnover time associated with current diagnostic tests. Molecular biological tests based on nucleic acid amplification have brought an unprecedented opportunity for the rapid and specific detection of M. tuberculosis from clinical specimens. With automated sequencing analysis, species identification of mycobacteria is now easier and more accurate than with conventional methods, and rapid detection of mutations in the genes associated with resistance to TB drugs provides early information on the potential drug resistance for each clinical isolate or for clinical samples. In addition, immunological tests for the detection of M. tuberculosis antigens and antibodies to the antigens have been explored to identify individuals at risk of developing TB or with latent TB infection (LTBI). The recent introduction of commercial IFN-gamma assay kits for the detection of LTBI provides a new approach for TB control even in areas with a high incidence of TB. However, these molecular and immunological tools still require further evaluation using large scale cohort studies before implementation in TB control programs.
Antigens, Bacterial/immunology
;
DNA, Bacterial/chemistry/genetics
;
Humans
;
Immunologic Tests/*methods
;
Interferon-gamma/analysis
;
Mycobacterium tuberculosis/genetics/immunology
;
Sequence Analysis, DNA
;
Tuberculin Test
;
Tuberculosis/*diagnosis/immunology/microbiology
10.Current Issues on Molecular and Immunological Diagnosis of Tuberculosis.
Yonsei Medical Journal 2007;48(3):347-359
aboratory diagnosis of tuberculosis (TB) traditionally relies on smear microscopy and culture of Mycobacterium tuberculosis from clinical samples. With recent advances in technology, there have been numerous efforts to develop new diagnostic tests for TB that overcome the low sensitivity and specificity and long turnover time associated with current diagnostic tests. Molecular biological tests based on nucleic acid amplification have brought an unprecedented opportunity for the rapid and specific detection of M. tuberculosis from clinical specimens. With automated sequencing analysis, species identification of mycobacteria is now easier and more accurate than with conventional methods, and rapid detection of mutations in the genes associated with resistance to TB drugs provides early information on the potential drug resistance for each clinical isolate or for clinical samples. In addition, immunological tests for the detection of M. tuberculosis antigens and antibodies to the antigens have been explored to identify individuals at risk of developing TB or with latent TB infection (LTBI). The recent introduction of commercial IFN-gamma assay kits for the detection of LTBI provides a new approach for TB control even in areas with a high incidence of TB. However, these molecular and immunological tools still require further evaluation using large scale cohort studies before implementation in TB control programs.
Antigens, Bacterial/immunology
;
DNA, Bacterial/chemistry/genetics
;
Humans
;
Immunologic Tests/*methods
;
Interferon-gamma/analysis
;
Mycobacterium tuberculosis/genetics/immunology
;
Sequence Analysis, DNA
;
Tuberculin Test
;
Tuberculosis/*diagnosis/immunology/microbiology