1.Dicer Is Down-regulated and Correlated with Drosha in Idiopathic Sudden Sensorineural Hearing Loss.
Shin KIM ; Jae Ho LEE ; Sung Il NAM
Journal of Korean Medical Science 2015;30(8):1183-1188
Previously, we reported the expression levels of specific microRNA machinery components, DGCR8 and AGO2, and their clinical association in patients with idiopathic sudden hearing loss (SSNHL). In the present study, we investigated the other important components of microRNA machinery and their association with clinical parameters in SSNHL patients. Fifty-seven patients diagnosed with SSNHL and fifty healthy volunteers were included in this study. We evaluated mRNA expression levels of Dicer and Drosha in whole blood of patients with SSNHL and the control group, using RT & real-time PCR analysis. The Dicer mRNA expression level was down-regulated in patients with SSNHL. However, the Drosha mRNA expression level was not significantly altered in patients with SSNHL. Neither the Dicer nor Drosha mRNA expression level was not associated with any clinical parameters, including age, sex, duration of initial treatment from onset (days), initial Pure tone average, Siegel's criteria, WBC, and Erythrocyte sedimentation rate. However, mRNA expression levels of Dicer and Drosha were positively correlated to each other in patients with SSNHL. In this study, we demonstrated for the first time that the Dicer mRNA expression level was down-regulated in patients with SSNHL, suggesting its important role in pathobiology of SSNHL development.
Acute Disease
;
Adult
;
Biomarkers
;
DEAD-box RNA Helicases/*blood
;
Down-Regulation
;
Female
;
Gene Expression Regulation
;
Hearing Loss, Sensorineural/*blood
;
Hearing Loss, Sudden/*blood
;
Humans
;
Male
;
MicroRNAs/*metabolism
;
Middle Aged
;
Ribonuclease III/*blood/*metabolism
;
Statistics as Topic
2.Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.
Bin YU ; Cong-qi DAI ; Zhen-you JIANG ; En-qing LI ; Chen CHEN ; Xian-lin WU ; Jia CHEN ; Qian LIU ; Chang-lin ZHAO ; Jin-xiong HE ; Da-hong JU ; Xiao-yin CHEN
Chinese journal of integrative medicine 2014;20(7):540-545
OBJECTIVETo observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1.
METHODSLeukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR).
RESULTSThe optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05).
CONCLUSIONSThe RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Antiviral Agents ; pharmacology ; Cells, Cultured ; Coculture Techniques ; DEAD Box Protein 58 ; DEAD-box RNA Helicases ; genetics ; metabolism ; Dendritic Cells ; drug effects ; immunology ; virology ; Diterpenes ; pharmacology ; Fetal Blood ; cytology ; Humans ; Influenza A Virus, H1N1 Subtype ; drug effects ; immunology ; Influenza, Human ; drug therapy ; immunology ; virology ; Interferon-beta ; genetics ; metabolism ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Leukocytes, Mononuclear ; drug effects ; immunology ; virology ; Macrophages ; drug effects ; virology ; NF-kappa B ; genetics ; metabolism ; Promoter Regions, Genetic ; drug effects ; immunology ; RNA, Messenger ; metabolism ; Signal Transduction ; drug effects ; genetics ; immunology