1.The mechanism of HBV disruption on RIG-I signaling pathway.
Libo YAN ; Feijun HUANG ; Hong TANG
Journal of Biomedical Engineering 2012;29(5):995-1013
Hepatitis B virus (HBV) infection disrupt the innate immunity response, which may play an important role in the chronic mechanism, while retinoic acid-induced gene I (RIG-I) mediated signaling pathway is one of the most important channel in the innate immunity. HBx and HBV polymerase may disrupt RIG-I mediated signaling pathway. The recent advances about HBV and RIG-I are reviewed in this article.
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
metabolism
;
Gene Products, pol
;
metabolism
;
Hepatitis B
;
immunology
;
Humans
;
Immunity, Innate
;
immunology
;
Signal Transduction
;
Trans-Activators
;
metabolism
2.TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition.
Hongxiao SONG ; Qingfei XIAO ; Fengchao XU ; Qi WEI ; Fei WANG ; Guangyun TAN
Chinese Medical Journal 2023;136(7):799-806
BACKGROUND:
The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.
METHODS:
The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.
RESULTS:
We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.
CONCLUSIONS
The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Humans
;
Hepatitis B virus
;
DEAD Box Protein 58/metabolism*
;
RNA
;
Liver Neoplasms
;
Virus Replication
;
Tripartite Motif Proteins/genetics*
;
Transcription Factors
;
Ubiquitin-Protein Ligases/genetics*
3.Retinoic acid inducible gene-I, more than a virus sensor.
Protein & Cell 2011;2(5):351-357
Retinoic acid inducible gene-I (RIG-I) is a caspase recruitment domain (CARD) containing protein that acts as an intracellular RNA receptor and senses virus infection. After binding to double stranded RNA (dsRNA) or 5'-triphosphate single stranded RNA (ssRNA), RIG-I transforms into an open conformation, translocates onto mitochondria, and interacts with the downstream adaptor mitochondrial antiviral signaling (MAVS) to induce the production of type I interferon and inflammatory factors via IRF3/7 and NF-κB pathways, respectively. Recently, accumulating evidence suggests that RIG-I could function in non-viral systems and participate in a series of biological events, such as inflammation and inflammation related diseases, cell proliferation, apoptosis and even senescence. Here we review recent advances in antiviral study of RIG-I as well as the functions of RIG-I in other fields.
Antiviral Agents
;
chemistry
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
metabolism
;
physiology
;
Humans
;
Inflammation
;
metabolism
;
Interferon Regulatory Factor-3
;
metabolism
;
NF-kappa B
;
metabolism
;
RNA Viruses
;
metabolism
;
RNA, Double-Stranded
;
metabolism
;
Signal Transduction
4.Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection.
Chao CHEN ; Xiaojuan CHI ; Qingling BAI ; Jilong CHEN
Chinese Journal of Biotechnology 2015;31(12):1671-1681
Influenza A virus can create acute respiratory infection in humans and animals throughout the world, and it is still one of the major causes of morbidity and mortality in humans worldwide. Numerous studies have shown that influenza A virus infection induces rapidly host innate immune response. Influenza A virus triggers the activation of signaling pathways that are dependent on host pattern recognition receptors (PRRs) including toll like receptors (TLRs) and RIG-I like receptors (RLRs). Using a variety of regulatory mechanisms, these signaling pathways activate downstream transcript factors that control expression of various interferons and cytokines, such as type I and type III interferons. Thus, these interferons stimulate the transcript of relevant interferon-stimulated genes (ISGs) and expression of the antiviral proteins, which are critical components of host innate immunity. In this review, we will highlight the mechanisms by which influenza A virus infection induces the interferon-mediated host innate immunity.
Cytokines
;
immunology
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
immunology
;
Humans
;
Immunity, Innate
;
Influenza A virus
;
Influenza, Human
;
immunology
;
Interferons
;
immunology
;
Receptors, Pattern Recognition
;
immunology
;
Signal Transduction
;
Toll-Like Receptors
;
immunology
5.Recent progress of the mechanisms for RNA viruses to block the recognition of dsRNA with RIG-I-like receptors.
Guo-qing WANG ; Zi-xiang ZHU ; Wei-jun CAO ; Lei LIU ; Hai-xue ZHENG
Chinese Journal of Virology 2014;30(6):704-712
RIG-I-like receptors (RLRs) belong to pattern recognition receptors, which perform significant roles in antiviral responses. RLRs can initiate a cascade of signaling transduction that induces the production of type I interferon and activates the interferon signaling pathway, ultimately resulting in antiviral responses. In the course of evolution, viruses have been constantly counteracting host immune systems to facilitate their own survival and replication, and have developed a set of antagonistic strategies. These mainly comprise elusion, disguise and attack strategies to eliminate the activation of RLRs. In virus-infected cells, RLRs recognize viral RNA and then induce antiviral responses. A better understanding of viral antagonistic strategies against RLRs will provide insights into the development of new antiviral medicines. This mini-review concludes that there are three main antagonistic strategies by which RNA viruses can counteract the activation of the RLRs pathway. It aims to provide references and insights for similar studies on viral antagonism in an array of RNA viruses.
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
genetics
;
immunology
;
Host-Pathogen Interactions
;
Humans
;
RNA Viruses
;
genetics
;
immunology
;
physiology
;
RNA, Double-Stranded
;
genetics
;
immunology
;
RNA, Viral
;
genetics
;
immunology
;
Virus Diseases
;
genetics
;
immunology
;
virology
6.RIG-I: a multifunctional protein beyond a pattern recognition receptor.
Xiao-Xiao XU ; Han WAN ; Li NIE ; Tong SHAO ; Li-Xin XIANG ; Jian-Zhong SHAO
Protein & Cell 2018;9(3):246-253
It was widely known that retinoic acid inducible gene I (RIG-I) functions as a cytosolic pattern recognition receptor that initiates innate antiviral immunity by detecting exogenous viral RNAs. However, recent studies showed that RIG-I participates in other various cellular activities by sensing endogenous RNAs under different circumstances. For example, RIG-I facilitates the therapy resistance and expansion of breast cancer cells and promotes T cell-independent B cell activation through interferon signaling activation by recognizing non-coding RNAs and endogenous retroviruses in certain situations. While in hepatocellular carcinoma and acute myeloid leukemia, RIG-I acts as a tumor suppressor through either augmenting STAT1 activation by competitively binding STAT1 against its negative regulator SHP1 or inhibiting AKT-mTOR signaling pathway by directly interacting with Src respectively. These new findings suggest that RIG-I plays more diverse roles in various cellular life activities, such as cell proliferation and differentiation, than previously known. Taken together, the function of RIG-I exceeds far beyond that of a pattern recognition receptor.
Animals
;
DEAD Box Protein 58
;
genetics
;
metabolism
;
Mice
;
RNA, Viral
;
genetics
;
metabolism
;
STAT1 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
;
physiology
7.RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA): a new antiviral pathway.
Saurabh CHATTOPADHYAY ; Ganes C SEN
Protein & Cell 2017;8(3):165-168
The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR) and Nod-like receptors (NLR), and membrane bound Toll like receptors (TLR) detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN) and interferon stimulated genes (ISGs), which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.
Animals
;
Apoptosis
;
DEAD Box Protein 58
;
genetics
;
immunology
;
metabolism
;
Humans
;
Immunity, Innate
;
Interferon Regulatory Factor-3
;
genetics
;
immunology
;
metabolism
;
Mice
;
Virus Diseases
;
genetics
;
immunology
;
metabolism
8.Structural and biochemical studies of RIG-I antiviral signaling.
Miao FENG ; Zhanyu DING ; Liang XU ; Liangliang KONG ; Wenjia WANG ; Shi JIAO ; Zhubing SHI ; Mark I GREENE ; Yao CONG ; Zhaocai ZHOU
Protein & Cell 2013;4(2):142-154
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adenosine Triphosphate
;
metabolism
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
metabolism
;
Dimerization
;
Humans
;
Mutagenesis, Site-Directed
;
Phosphorylation
;
Polyubiquitin
;
metabolism
;
Protein Binding
;
Protein Structure, Tertiary
;
RNA, Double-Stranded
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Signal Transduction
;
Transcription Factors
;
metabolism
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
metabolism
;
Ubiquitination
9.SUMOylation of RIG-I positively regulates the type I interferon signaling.
Zhiqiang MI ; Jihuan FU ; Yanbao XIONG ; Hong TANG
Protein & Cell 2010;1(3):275-283
Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5'-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.
Adaptor Proteins, Signal Transducing
;
physiology
;
Base Sequence
;
Binding Sites
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
immunology
;
physiology
;
DNA Primers
;
genetics
;
Gene Knockdown Techniques
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Immunity, Innate
;
Interferon Type I
;
immunology
;
physiology
;
RNA Interference
;
SUMO-1 Protein
;
physiology
;
Sendai virus
;
immunology
;
Signal Transduction
;
Sumoylation
;
Ubiquitin-Conjugating Enzymes
;
antagonists & inhibitors
;
genetics
;
physiology
10.Emerging relationship between RNA helicases and autophagy.
Miao-Miao ZHAO ; Ru-Sha WANG ; Yan-Lin ZHOU ; Zheng-Gang YANG
Journal of Zhejiang University. Science. B 2020;21(10):767-778
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Animals
;
Antiviral Agents/pharmacology*
;
Autophagy
;
Beclin-1/metabolism*
;
Carcinogenesis
;
Cell Survival
;
DEAD Box Protein 58/metabolism*
;
Disease Progression
;
Gene Expression Regulation
;
Homeostasis
;
Humans
;
Immune System/physiology*
;
Neoplasms/metabolism*
;
RNA Helicases/metabolism*
;
RNA Splicing
;
Receptors, Immunologic/metabolism*