1.Enzyme histochemical study of germanium dioxide-induced mitochondrial myopathy in rats.
Shin Young YIM ; Il Yung LEE ; Tai Seung KIM
Yonsei Medical Journal 1999;40(1):69-75
The purpose of this study were 1) to determine the earliest pathological changes of germanium dioxide (GeO2)-induced myopathy; 2) to determine the pathomechanism of GeO2-induced myopathy; and 3) to determine the minimal dose of GeO2 to induce myopathy in rats. One hundred and twenty five male and female Sprague-Dawley rats, each weighing about 150 gm, were divided into seven groups according to daily doses of GeO2. Within each group, histopathological studies were done at 4, 8, 16, and 24 weeks of GeO2 administration. Characteristic mitochondrial myopathy was induced in the groups treated daily with 10 mg/kg of GeO2 or more. In conclusion, the results were as follows: 1) The earliest pathological change on electron microscope was the abnormalities of mitochondrial shape, size and increased number of mitochondria; 2) The earliest pathological change on light microscope was the presence of ragged red fibers which showed enhanced subsarcolemmal succinate dehydrogenase and cytochrome c oxidase reactivity; 3) GeO2 seemed to affect the mitochondrial oxidative metabolism of muscle fibers; 4) GeO2 could induce mitochondrial myopathy with 10 mg/kg of GeO2 for 4 weeks or less duration in rats.
Animal
;
Cytochrome-c Oxidase/metabolism
;
Female
;
Germanium/toxicity*
;
Histocytochemistry
;
Male
;
Mitochondrial Myopathies/pathology
;
Mitochondrial Myopathies/enzymology
;
Mitochondrial Myopathies/chemically induced*
;
Muscles/ultrastructure
;
Muscles/enzymology
;
Rats
;
Rats, Sprague-Dawley
;
Succinate Dehydrogenase/metabolism
2.Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome.
Yan-ling YANG ; Fang SUN ; Yao ZHANG ; Ning QIAN ; Yun YUAN ; Zhao-xia WANG ; Yu QI ; Jiang-xi XIAO ; Xiao-ying WANG ; Zhao-yue QI ; Yue-hua ZHANG ; Yu-wu JIANG ; Xin-hua BAO ; Jiong QIN ; Xi-ru WU
Chinese Medical Journal 2006;119(5):373-377
BACKGROUNDLeigh syndrome is an inherited neurodegenerative disease that emerges in infancy and childhood and presents with a clinically heterogeneous variety of neuromuscular and non-neuromuscular disorders. It can result from the inheritance of mutations in either nuclear or mitochondrial DNA. In the current study, we performed a retrospective study in 65 patients in order to investigate the clinical and genetic characteristics of Leigh syndrome in Chinese patients.
METHODSSixty-five unrelated cases (35 men and 30 women) who were hospitalized in the past 12 years were reviewed. Diagnosis was based on both the clinical presentation and the characteristic neuropathologic findings of bilateral symmetric necrotizing lesions in the basal ganglia and brain stem as detected using cranial computed tomography (CT) scan or magnetic resonance imaging (MRI). The differential diagnosis of organic acidurias and fatty acid beta-oxidation defects were performed. Specific point mutations and deletions in mitochondrial DNA (T8993G, T8993C, T9176C, A8344G, A3243G) were screened by PCR-restriction analysis and Southern blot. The SURF1 gene was sequenced. Skeletal muscle biopsies were performed in 17 (26.2%) of the patients. The diagnosis was confirmed by autopsy in 6 (9.2%) patients.
RESULTSThe patients had various forms of metabolic encephalomyopathy. Fifty-nine (90.8%) of the patients had the typical neuroradiological features of Leigh syndrome, including symmetrical necrotizing lesions scattered within the basal ganglia, thalamus and brain stem. Twenty (30.8%) patients were confirmed by genetic, biochemical analysis and autopsy. Specific point mutations in mitochondrial DNA were found in 5 cases (7.7%). Of these, the A8344G mutation was detected in 2 patients. The T8993G, T8993C, and A3243G point mutations were identified in 3 other patients, respectively. SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) families by DNA sequencing. A G604C mutation was identified in 6 (9.2%) patients. The genotypes of 52 patients remained unknown.
CONCLUSIONSLeigh syndrome presents as a diverse array of clinical features and can result from specific mutations in nuclear or mitochondrial DNA. In this study, SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) out of 65 patients with Leigh syndrome. It indicates that SURF1 mutations might be a common cause of Leigh syndrome in China. The etiology of Leigh syndrome in Chinese patients represents a persistent challenge to clinicians.
Adolescent ; Child ; Child, Preschool ; Cytochrome-c Oxidase Deficiency ; genetics ; Female ; Humans ; Infant ; Infant, Newborn ; Leigh Disease ; genetics ; metabolism ; pathology ; therapy ; Male ; Membrane Proteins ; Mitochondrial Proteins ; Mutation ; Proteins ; genetics ; Retrospective Studies ; Treatment Outcome