1.The antagonistic action of epigallocatechin-3-gallate on microcystin LR-induced oxidative damage on hepatocytes of mice and the expression of cytochrome P450 2E1.
Zhi-Xia HAN ; Lan YANG ; Liang ZHANG ; Chuan XU ; Wei-Qun SHU
Chinese Journal of Preventive Medicine 2010;44(1):24-29
OBJECTIVETo evaluate the effects of antagonistic action of epigallocatechin-3-gallate (EGCG) on microcystin LR (MC-LR) induced oxidative damage on mice and the expression of cytochrome P450 2E1 (CYP2E1) which was one of phase Iota detoxification enzymes.
METHODSA total of 24 specific pathogen free (SPF) male BALB/c mice were randomly divided into four groups, including control group, MC-LR group, low concentration EGCG group, and high concentration EGCG group. Mice were sacrificed on the 15th day, body weight, and the relative organ weight, liver antioxidant enzyme level and lipid peroxidation product, liver histopathology and CYP2E1 gene and protein expression were detected and analyzed respectively.
RESULTS(1) EGCG could antagonise the liver injury which had been damaged by MC-LR. (2) The malonaldehyde (MDA) level ((2.87 +/- 0.03) nmol/mg prot) and superoxide dismutase (SOD) level ((168.18 +/- 2.86) U/mg prot) in MC-LR group were significantly different when compared with the two EGCG treatment groups (the MDA values of the low and high concentration EGCG group were (2.37 +/- 0.05) nmol/mg prot and (1.44 +/- 0.05) nmol/mg prot, F = 906.63, P < 0.01; the SOD values were (176.55 +/- 2.98) U/mg prot and (184.89 +/- 1.53) U/mg prot, F = 32.32, P < 0.01). (3) MC-LR up-regulated the mRNA and protein expression of CYP2E1 (the mRNA values of MC-LR group and control were 1.41 +/- 0.26, 0.86 +/- 0.13, t = -4.22, P = 0.003; the protein values of MC-LR group and control were 0.24 +/- 0.03, 0.12 +/- 0.02, t = -9.21, P < 0.05). EGCG down-regulated the mRNA (the values of the low and high concentration EGCG group were 1.09 +/- 0.08, 0.99 +/- 0.09, F = 9.03, P = 0.004) and protein expression (the values of the low and high concentration EGCG group were 0.21 +/- 0.03, 0.14 +/- 0.02, F = 24.76, P < 0.05) of CYP2E1 which activated by MC-LR.
CONCLUSIONThe up-regulation of CYP2E1 which induced by MC-LR was inhibited by EGCG intervention. EGCG might antagonize the oxidation damage of hepatocytes in a certain degree.
Animals ; Catechin ; analogs & derivatives ; pharmacology ; Cytochrome P-450 CYP2E1 ; metabolism ; Hepatocytes ; drug effects ; metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Microcystins ; adverse effects ; Oxidative Stress ; drug effects
2.Herba houttuyniae extract induces apoptotic death of human promyelocytic leukemia cells via caspase activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release.
Kang Beom KWON ; Eun Kyung KIM ; Byung Cheul SHIN ; Eun A SEO ; Jeong Yeh YANG ; Do Gon RYU
Experimental & Molecular Medicine 2003;35(2):91-97
Herba houttuyniae has been used as a constituent of herval medicine prescriptions for the treatment of inflammation, cancer, and other diseases. In the present study, we investigated the cellular effects of herba houttuyniae extract (HHE) and the signal pathways of HHE-induced apoptosis in HL-60 human promyelocytic leukemia cell line. HHE treatment caused apoptosis of cells as evidenced by discontinuous fragmentation of DNA, the loss of mitochondrial membrane potential, release of mitochondrial cytochrome c into the cytosol, activation of procaspase-9 and caspase-3, and proteolytic cleavage of poly(ADP-ribose) polymerase. Pretreatment of Ac-DEVD-CHO, caspase-3 specific inhibitor, or cyclosporin A, a mitochondrial permeability transition inhibitor, completely abolished HHE-induced DNA fragmentation. Together, these results suggest that HHE possibly causes mitochondrial damage leading to cytochrome c release into cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic cell death in HL-60 cells.
Apoptosis/*drug effects
;
Caspases/*metabolism
;
Cytochrome c Group/*metabolism
;
Enzyme Activation/drug effects
;
HL-60 Cells
;
Human
;
Medicine, Oriental Traditional
;
Membrane Potentials/drug effects
;
Mitochondria/*drug effects
;
Plant Extracts/*pharmacology
;
Plants, Medicinal/*chemistry
3.Activation of caspase-8 in 3-deazaadenosine-induced apoptosis of U-937 cells occurs downstream of caspase-3 and caspase-9 without Fas receptor-ligand interaction.
Yeo Jin CHAE ; Ho Shik KIM ; Hyang Shuk RHIM ; Bo Eun KIM ; Seong Whan JEONG ; In Kyung KIM
Experimental & Molecular Medicine 2001;33(4):284-292
3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.
Amino Acid Chloromethyl Ketones/pharmacology
;
Apoptosis/*drug effects
;
Bongkrekic Acid/pharmacology
;
Caspases/*metabolism
;
Cell Line
;
Cyclosporine/pharmacology
;
Cytochrome c/drug effects/metabolism
;
Enzyme Activation
;
Human
;
Leukocytes, Mononuclear/cytology
;
Ligands
;
Membrane Glycoproteins/metabolism
;
Tubercidin/*pharmacology
;
U937 Cells
4.Activation of caspase-8 in 3-deazaadenosine-induced apoptosis of U-937 cells occurs downstream of caspase-3 and caspase-9 without Fas receptor-ligand interaction.
Yeo Jin CHAE ; Ho Shik KIM ; Hyang Shuk RHIM ; Bo Eun KIM ; Seong Whan JEONG ; In Kyung KIM
Experimental & Molecular Medicine 2001;33(4):284-292
3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.
Amino Acid Chloromethyl Ketones/pharmacology
;
Apoptosis/*drug effects
;
Bongkrekic Acid/pharmacology
;
Caspases/*metabolism
;
Cell Line
;
Cyclosporine/pharmacology
;
Cytochrome c/drug effects/metabolism
;
Enzyme Activation
;
Human
;
Leukocytes, Mononuclear/cytology
;
Ligands
;
Membrane Glycoproteins/metabolism
;
Tubercidin/*pharmacology
;
U937 Cells
5.Antitumor effect of capsaicin on colorectal carcinoma xenograft in nude mice.
Li-li ZHU ; Wan-le HU ; Lin-jun ZHANG ; Zhi-gao YU ; Chong-jie HUANG ; Ming-zhe JIANG ; Ming-xing TENG ; Jian-lu LIU ; Chang-bao LIU
Chinese Journal of Oncology 2013;35(4):256-261
OBJECTIVETo evaluate the effect of capsaicin on nude mice xenografted with colorectal carcinoma cells, and to explore its mechanism of action.
METHODSA nude mouse model of colorectal cancer was established by subcutaneous inoculation of human colorectal carcinoma HT-29 cells. Terminal deoxynucleotidyl transferase-mediated nicked labeling assay (TUNEL) was undertaken to detect the cell proliferation and apoptosis in the xenograft tissue in nude mice. Immunohistochemical (IHC) staining and Western blot were used to detect the expression of HSP27, Cyt-C and active caspase-3.
RESULTSThe tumor growth of the groups C10 and C20 was significantly slower than that of the group NS. The integrated optical density (IOD) of both the group C5 (2532.14 ± 578.11) and group C10 (6364.03 ± 1137.98) was significantly higher than that of the group NS (760.12 ± 238.05), (P < 0.05). The integrated optical density (IOD) of the group C20 was (15743.96 ± 1855.95), significantly higher than that of the groups C10, C5 and NS (all were P < 0.01). Immunohistochemistry showed that the cytoplasmic expression of HSP27 was strongly positive in the group NS, and significantly reduced with the increasing dose of capsaicin in the treated groups. The expression of active caspase-3 and Cyt-C in the group NS was weakly positive, and was significantly increased with the increasing dose of capsaicin in the groups C5 and C10 (P < 0.05), and the expression of active caspase-3 and Cyt-C of the group C20 was significantly higher than that of the groups C5, C10 and NS (P < 0.01). Western blot analysis showed that both the expressions of HSP27 of the group C5 (0.73 ± 0.05) and the group C10 (0.41 ± 0.03) were significantly lower than that of the group NS (P < 0.05). The expression of HSP27 of the group C20 (0.22 ± 0.06) was significantly lower than that of the groups C5, C10 and NS (P < 0.01). The expressions of active-caspase-3 and Cyt-C in the group C5 were (2.57 ± 0.34) and (2.03 ± 0.38), significantly higher than those of the group NS (P < 0.05). The expressions of active-caspase-3 and Cyt-C in the group C10 were (4.23 ± 0.45) and (3.13 ± 0.44), also significantly higher than those of the group NS (P < 0.05). The expressions of active-caspase-3 and Cyt-C in the group C20 were (5.78 ± 0.48) and (4.92 ± 0.52), significantly higher than those of the group C5, C10 and NS (P < 0.01). TUNEL analysis showed that there was a significant difference of cell apoptosis in comparison of each two groups. The higher dose of capsaicin was used, the more apoptosis was observed.
CONCLUSIONSCapsaicin can significantly inhibit the tumor growth and induce cell apoptosis in the colorectal carcinoma xenograft in nude mice. Its mechanism of action is possibly related with the down-regulation of HSP27 expression and up-regulation of expression of active caspase-3 and Cyt-C in the colorectal carcinoma xenograft in nude mice.
Animals ; Antineoplastic Agents, Phytogenic ; administration & dosage ; pharmacology ; Apoptosis ; drug effects ; Capsaicin ; administration & dosage ; pharmacology ; Caspase 3 ; metabolism ; Cell Proliferation ; drug effects ; Cytochrome c Group ; metabolism ; Dose-Response Relationship, Drug ; Female ; HSP27 Heat-Shock Proteins ; metabolism ; HT29 Cells ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Transplantation ; Random Allocation ; Tumor Burden ; Xenograft Model Antitumor Assays
6.The mechanism of STI571 inducing apoptosis of K562 cells.
Yazhen QIN ; Shanshan CHEN ; Yan CHANG ; Jiayu FU ; Xinjuan WANG
Chinese Journal of Hematology 2002;23(6):289-292
OBJECTIVETo investigate the mechanism of STI571 inducing apoptosis of K562 cells which express P210(BCR/ABL).
METHODSApoptosis was analyzed by Annexin-V/PI, DioC6 [3] staining, DCFH-DA staining, DNA-PI staining and DNA ladder. Western blot was used to analyse mitochondrial and cytosolic cyto C, Bcl-X(L), caspase-3, actin protein and the level of tyrosine phosphorylation.
RESULTSAfter exposure to STI571, K562 cells were induced to apoptosis. Tyrosine phosphorylation level of P210(BCR/ABL) and Bcl-X(L) was decreased. Caspase-3 was activated and there was an cytosolic accumulation of cyto C.
CONCLUSIONSTI571 could rapidly decrease the tyrosine phosphorylation level of P210(BCR/ABL). The signal pathway mediated by the cytosolic translocation of mitochondrial cyto C was one of the mechanisms that STI571 inducing apoptosis. STI571 was an effective gene targeting therapeutic agent.
Antineoplastic Agents ; pharmacology ; Apoptosis ; Benzamides ; Caspase 3 ; Caspases ; metabolism ; Cytochrome c Group ; metabolism ; Cytoplasm ; metabolism ; Enzyme Precursors ; metabolism ; Fusion Proteins, bcr-abl ; metabolism ; Humans ; Imatinib Mesylate ; K562 Cells ; Membrane Potentials ; drug effects ; Mitochondria ; drug effects ; Piperazines ; pharmacology ; Pyrimidines ; pharmacology ; Reactive Oxygen Species ; metabolism