1.A study on the regulation of translocation of glucose transporters during hepatocarcinogenesis induced by 3'-Me DAB.
Yoon Soo KIM ; Eun Mee PAIK ; Myung Shik LEE ; Kyung Sup KIM ; Kyung Ja CHAI ; Yong Ho AHN
Yonsei Medical Journal 1990;31(4):315-324
The mechanism of glucose transported (GT) expression on the plasma membranes of hepatoma cells in rats induced by 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB) was studied. Cytochalasin B binding to plasma membrane fractions from control and 3'-MeDAB group in the absence of cold cytochalasin B showed 9,825 +/- 925 and 30,165 +/- 625 dpm/mg membrane protein. Scatchard plot analysis showed that the GTs present on the plasma membrane fractions in control and 3'-Me DAB groups were 5.0 and 16.0 pmol/mg membrane protein and their Kd values were 151 and 157 nM, respectively. These results suggest that the numbers of GTs in plasma membrane were increased in the 3'-Me DAB group compared to the control group. In contrast, the amounts of GTs in low density microsomal (LDM) fractions measured by a photoaffinity labeling technique using [3H]-cytochalasin B were 31,207 and 11,702 dpm/mg protein in the control and 3'-Me DAB group, respectively. These results suggest that GTs were translocated from LDM to plasma membranes during carcinogenesis. To confirm these results by an independent method 10% SDS-polyacrylamide gel electrophoresis was carried out. Gel slice No. 13 corresponding to MW of 45 kDa from plasma membrane fractions showed increased radioactivities in the 3'-Me DAB group compared to the control group. However, LDM fractions of the 3'-Me DAB group showed decreased radioactivities compared to the control group. Western blot analysis using anti-human RBC GT antibody present in the plasma membranes and LDM fractions from control and 3'-Me DAB groups did not show any significant difference, indicating low cross-reactivity between them. These results indicate that increased glucose transport seems to be more likely due to reciprocal redistribution of GTs between plasma membrane and LDM fractions.
Animal
;
Blotting, Western
;
Cell Membrane/chemistry
;
Cytochalasin B/metabolism
;
Glucose/*analysis
;
Liver Neoplasms, Experimental/*metabolism
;
Male
;
Methyldimethylaminoazobenzene
;
Microsomes, Liver/*chemistry
;
Monosaccharide Transport Proteins/*analysis
;
Rats
;
Support, Non-U.S. Gov't
2.Effects of glutamate on dehydroascorbate uptake and Its enhanced vulnerability to the peroxidation in cerebral cortical slices.
Jin Hyang SONG ; Seon Ho SHIN ; Ill Min CHUNG
Experimental & Molecular Medicine 2002;34(6):419-425
Pro-oxidant properties of ascorbate have been studied with uses of brain tissues and neuronal cells. Here we address potential mechanism of ascorbate coupling with glutamate to generate oxidative stress, and the role which oxidized ascorbate (dehydroascorbate) transport plays in oxidative neuronal injury. Ascorbate in neurones can be depleted by adding glutamate in culture medium since endogenous ascorbate can be exchanged with glutamate, which enhances ascorbate/ dehydroascorbate transport by depleting ascorbate in the neurons with the glutamate-heteroexchange. However, ascorbate is known readily being oxidized to dehydroascorbate in the medium. Glutamate enhanced the dehydroascorbate uptake by cells via a glucose transporter (GLUT) from extracellular region, and cytosolic dehydroascorbate enhanced lipid peroxide production and reduced glutathione (GSH) concentrations. Iso-ascorbate, the epimer of ascorbate was ineffective in generating the oxidative stress. These observations support the current concept that the high rates of dehydroascorbate transport via a GLUT after the release of ascorbate by glutamate leads to peroxidation, the role of glutamate on ascorbate/ dehydroascorbate recycling being critical to induce neuronal death via an oxidative stress in the brain injury.
Animals
;
Ascorbic Acid/analogs & derivatives/pharmacology
;
Biological Transport/drug effects
;
Cerebral Cortex/*drug effects/*metabolism
;
Cytochalasin B/pharmacology
;
Dehydroascorbic Acid/*metabolism
;
Glutamic Acid/*pharmacology
;
Glutathione/metabolism
;
In Vitro
;
Lipid Peroxidation/*drug effects
;
Male
;
Oxidation-Reduction/drug effects
;
Oxidative Stress/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Thiobarbituric Acid Reactive Substances/metabolism