1.Neuroprotective Effect of Citicoline on Retinal Cell Damage Induced by Kainic Acid in Rats.
Yong Seop HAN ; In Young CHUNG ; Jong Moon PARK ; Ji Myeong YU
Korean Journal of Ophthalmology 2005;19(3):219-226
PURPOSE: To examine whether citicoline has a neuroprotective effect on kainic acid (KA) -induced retinal damage. METHODS: KA (6 nmol) was injected into the vitreous of rat eyes. Citicoline (500mg/kg, i.p.) was administered to the rats once before and twice a day after KA-injection for 3- and 7-day intervals. The neuroprotective effects of citicoline were estimated by measuring the thickness of the various retinal layers using hematoxylin-eosin (H and E) staining. In addition, immunohistochemistry was conducted to elucidate the expression of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS). RESULTS: Morphometric analysis of retinal damage in KA-injected eyes showed significant cell loss in the inner nuclear layer (INL) and inner plexiform layer (IPL) of the retinas at 3 and 7 days after KA injection, but not in the outer nuclear layer (ONL). At 3 days after citicoline treatment, no significant changes were detected in the retinal thickness and immunoreactivities of eNOS and nNOS. The immunoreactivities of eNOS and nNOS increased in the retina at 7 days after the KA injection. However, prolonged treatment for 7 days significantly attenuated the immunoreactivities and the reduction of thickness. CONCLUSIONS: The results indicate that citicoline has a neuroprotective effect on KA-induced neurotoxicity in the retina.
Retina/*drug effects/*pathology
;
Rats, Sprague-Dawley
;
Rats
;
Neurotoxins/*pharmacology
;
Neuroprotective Agents/*pharmacology
;
Male
;
Kainic Acid/*pharmacology
;
Cytidine Diphosphate Choline/*pharmacology
;
Animals
2.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
Rats
;
Animals
;
Periploca
;
Cysteine
;
Cytidine Diphosphate Choline
;
Network Pharmacology
;
Phosphorylcholine
;
Metabolomics
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers
;
Glycerophospholipids
;
Methionine
;
Purines
;
Chromatography, High Pressure Liquid
3.Effect of citicoline on spatial learning and memory of rats after focal cerebral ischemia.
Jian-jun ZHAO ; Yong LIU ; Xin-lin CHEN ; Jian-xin LIU ; Ying-fang TIAN ; Peng-bo ZHANG ; Qian-yan KANG ; Fen QIU
Journal of Southern Medical University 2006;26(2):174-176
OBJECTIVETo investigate the effects of citicoline on spatial learning and memory of rats after focal cerebral ischemia.
METHODSThe rats were randomly divided into sham-operation group, ischemia control group and citicoline group. In the later two groups, focal cerebral ischemia model was established by introducing an intraluminal filament into the left middle cerebral artery, and citicoline (500 mg/kg) or 0.9% NaCl was administered intraperitoneally once a day for 2 weeks after the operation. The rats in the sham-operation group were not subjected to middle cerebral artery occlusion (MCAO) with intraluminal filament. The spatial learning and memory functions of the rats were evaluated by Morris water maze test 15 days after MCAO for 5 days.
RESULTSThe rats in ischemia control group exhibited serious spatial learning and memory deficits in both place navigation test and spatial probe test. In the former test, the mean escape latency of citicoline-treated rats were significantly shorter than that of ischemia control rats (P<0.01), and in the latter test significant diffidence was noted between citicoline and ischemia control groups in the percentage time spent in the former platform quadrant and frequency of crossing the former platform (P<0.05).
CONCLUSIONCiticoline can improve the spatial learning and memory function of rats after focal cerebral ischemia.
Animals ; Avoidance Learning ; drug effects ; Cytidine Diphosphate Choline ; pharmacology ; Infarction, Middle Cerebral Artery ; physiopathology ; Male ; Maze Learning ; drug effects ; Nootropic Agents ; pharmacology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spatial Behavior ; drug effects
4.Role of hyperglycemia-induced 5-hydroxytryptamine degradation of hepatic stellate cells in hepatic inflammation and fibrosis induced by type 2 diabetes mellitus.
Xiu Rui LIANG ; Xue Chun SHAN ; Jing GUAN ; Rui ZHANG ; Jing YANG ; Yi ZHANG ; Jia Qi JIN ; Yu Xin ZHANG ; Fan XU ; Ji Hua FU
Journal of Peking University(Health Sciences) 2022;54(6):1141-1150
OBJECTIVE:
To explore the role of 5-hydroxytryptamine (5-HT) in type 2 diabetes mellitus (T2DM)-related hepatic inflammation and fibrosis.
METHODS:
Male C57BL/6J mice were used to establish T2DM model by high-fat diet feeding combined with intraperitoneal injection of streptozotocin. Then, the mice with hyperglycemia were still fed with high-fat diet for nine weeks, and treated with or without 5-HT2A receptor (5-HT2AR) antagonist sarpogrelate hydrochloride (SH) and 5-HT synthesis inhibitor carbidopa (CDP) (alone or in combination). To observe the role of 5-HT in the myofibroblastization of hepa-tic stellate cells (HSCs), human HSCs LX-2 were exposed to high glucose, and were treated with or without SH, CDP or monoamine oxidase A (MAO-A) inhibitor clorgiline (CGL). Hematoxylin & eosin and Masson staining were used to detect the pathological lesions of liver tissue section, immunohistochemistry and Western blot were used to analyze protein expression, biochemical indicators were measured by ELISA or enzyme kits, and levels of intracellular reactive oxygen species (ROS) were detected by fluorescent probe.
RESULTS:
There were up-regulated expressions of 5-HT2AR, 5-HT synthases and MAO-A, and elevated levels of 5-HT in the liver of the T2DM mice. In addition to reduction of the hepatic 5-HT levels and MAO-A expression, treatment with SH and CDP could effectively ameliorate liver lesions in the T2DM mice, both of which could ameliorate hepatic injury and steatosis, significantly inhibit the increase of hepatic ROS (H2O2) levels to alleviate oxidative stress, and markedly suppress the production of transforming growth factor β1 (TGF-β1) and the development of inflammation and fibrosis in liver. More importantly, there was a synergistic effect between SH and CDP. Studies on LX-2 cells showed that high glucose could induce up-regulation of 5-HT2AR, 5-HT synthases and MAO-A expression, increase intracellular 5-HT level, increase the production of ROS, and lead to myofibroblastization of LX-2, resulting in the increase of TGF-β1 synthesis and production of inflammatory and fibrosis factors. The effects of high glucose could be significantly inhibited by 5-HT2AR antagonist SH or be markedly abolished by mitochondrial 5-HT degradation inhibitor CGL. In addition, SH significantly suppressed the up-regulation of 5-HT synthases and MAO-A induced by high glucose in LX-2.
CONCLUSION
Hyperglycemia-induced myofibroblastization and TGF-β1 production of HSCs, which leads to hepatic inflammation and fibrosis in T2DM mice, is probably due to the up-regulation of 5-HT2AR expression and increase of 5-HT synthesis and degradation, resulting in the increase of ROS production in mitochondria. Among them, 5-HT2AR is involved in the regulation of 5-HT synthases and MAO-A expression.
Male
;
Mice
;
Humans
;
Animals
;
Hepatic Stellate Cells/pathology*
;
Transforming Growth Factor beta1/pharmacology*
;
Serotonin/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/complications*
;
Hydrogen Peroxide/metabolism*
;
Mice, Inbred C57BL
;
Liver Cirrhosis/etiology*
;
Hyperglycemia/pathology*
;
Monoamine Oxidase/metabolism*
;
Inflammation
;
Glucose/metabolism*
;
Cytidine Diphosphate/pharmacology*