1.Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin.
Gab Man PARK ; Hyun PARK ; Sangtae OH ; Seokjoon LEE
The Korean Journal of Parasitology 2017;55(6):661-665
We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.
Artemisinins
;
Cycloaddition Reaction
;
Parasites
3.The Synthesis of the Stable IVDU Derivative for Imaging HSV-1 TK Expression.
Eun jung KIM ; Tae Hyun CHOI ; Soon Hyuk AHN ; Byoung Soo KIM ; Hyun PARK ; Gi Jeong CHEON ; Hak June RHEE ; Gwang Il AN
Nuclear Medicine and Molecular Imaging 2009;43(5):478-486
PURPOSE: 5-iododeoxyuridine analogues have been exclusively developed for the potential antiviral and antitumor therapeutic agents. In this study, we synthesized carbocyclic radioiododeoxyuridineanalogue (ddIVDU) and carbocyclic intermediate as efficient carbocyclic radiopharmaceuticals. MATERIALS AND METHODS: The synthesis is LAH reduction, hetero Diels-Alder reaction as key reactions including Pd(0)-catalyzed coupling reaction together with organotin. MCA-RH7777 (MCA) and MCA-tk (HSV1-tk positive) cells were treated with various concentration of carbocyclic ddIVDU, and GCV. Cytotoxicity was measured by the MTS methods. For in vitro uptake study, MCA and MCA-tk cells were incubated with 1uCi of [(125)I]carbocyclic ddIVDU. Accumulated radioactivity was measured after various incubation times. RESULTS: The synthesis of ddIVDU and precursor for radioiodination were achieved from cyclopentadiene in good overall yield, respectively. The radioiododemetallation for radiolabeling gave more than 80% yield with > 95% radiochemical purity. GCV was more toxic than carbocyclic ddIVDU in MCA-tk cells. Accumulation of [(125)I]carbocyclic ddIVDU was higher in MCA-tk cells than MCA cells. CONCLUSION: Biological data reveal that ddIVDU is stable in vitro, less toxic than ganciclovir (GCV), and selective in HSV1-tk expressed cells. Thus, this new carbocyclic nucleoside, referred to in this paper as carbocyclic 2',3'-didehydro-2',3'-dideoxy-5- iodovinyluridine (carbocyclic ddIVDU), is a potential imaging probe for HSV1-tk.
Cycloaddition Reaction
;
Ganciclovir
;
Herpesvirus 1, Human
;
Idoxuridine
;
Radioactivity
;
Radiopharmaceuticals
4.Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications.
Janarthanan GOPINATHAN ; Insup NOH
Tissue Engineering and Regenerative Medicine 2018;15(5):531-546
BACKGROUND: The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS: In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS: The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION: Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
Biocompatible Materials
;
Bioprinting*
;
Click Chemistry
;
Cycloaddition Reaction
;
Hydrogel*
;
Hydrogels*
;
Ink*
;
Regeneration
;
Regenerative Medicine
;
Tissue Engineering*