1.Effects of Erk signal transduction on the cell cycle of rat hepatic stellate cells stimulated by acetaldehyde.
Ming-de JIANG ; Hong-de MA ; Xian-fei ZHONG ; Fang-wei XIE ; Wei-zheng ZENG
Chinese Journal of Hepatology 2003;11(11):650-653
OBJECTIVETo investigate the effect of PD98059 on the proliferation and cell cycle of rat hepatic stellate cells (HSCs) stimulated by acetaldehyde and explore its mechanism.
METHODSRat HSCs stimulated by acetaldehyde were incubated with different concentrations of PD98059. Cell proliferation was assessed by MTT colorimetric assay. Cell cycle was analysed by flow cytometry. The mRNA of cyclin D1 and CDK4 were examined by RT-PCR.
RESULTS20, 50, 100 micromol/L PD98059 could significantly inhibit the proliferation of HSCs stimulated by acetaldehyde in a does-dependent manner (0.109+/-0.020, 0.081+/-0.010 and 0.056+/-0.020 vs 0.146+/-0.030, F=31.385, P<0.05) and provoke G0/G1 phase arrest of HSCs stimulated by acetaldehyde in a does-dependent manner (61.9%+/-6.3%, 64.1%+/-3.3% and 70.9%+/-4.8% vs 55.2%+/-4.4%, F=16.402, P<0.05). 50, 100 micromol/L PD98059 could markedly inhibit cyclin D1 mRNA expression of HSC stimulated by acetaldehyde (0.56+/-0.04 and 0.46+/-0.03 vs 0.65+/-0.07, F=68.758, P<0.05) and CDK4 mRNA expression (0.39+/-0.07 and 0.33+/-0.05 vs 0.50+/-0.06, F=29.406, P<0.05).
CONCLUSIONThe Erk signal transduction pathway plays an important role in regulating the proliferation and cell cycle of rat hepatic stellate cells stimulated by acetaldehyde, which may be partly related to its regulative effect on the expression of cyclin D1 gene and CDK4 gene
Acetaldehyde ; pharmacology ; Animals ; Cells, Cultured ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinases ; metabolism ; Enzyme Inhibitors ; pharmacology ; Flavonoids ; pharmacology ; Hepatocytes ; drug effects ; Proto-Oncogene Proteins ; Rats
2.Expression of G1 Cell Cycle Regulators in Rat Liver upon Repeated Exposure to Thioacetamide.
Kyoung Tae KIM ; Sang Young HAN ; Jin Sook JEONG
The Korean Journal of Hepatology 2007;13(1):81-90
BACKGROUND/AIMS: Eukaryotic cell cycle is regulated by signal transduction pathways mediated by complexes of cyclin dependent kinases (CDKs) and their partner cyclins, or by interaction with CDK inhibitors. Thioacetamide (TA) is a weak hepatocarcinogen causing several types of liver damage in a dose dependent manner and ultimately producing malignant transformation. We investigated alterations of expression of cell cycle regulators in the rat liver, involved in G1 entry and progression during TA administration. METHODS: We studied expression patterns of cyclin D1, CDK4, CDK6, p21(CIP1) and p16(INK4a) during daily intraperitoneal injection of low dose TA (50 mg/kg) till 7 day. We used western blot and immunohistochemistry for detection. RESULTS: Expression of cyclin D1, CDK4, CDK6 and p21(CIP1) increased from 6 hour and peaked at 2, 3 day, then decreased next 2 days, and re-increased at 6 day. Cytoplasmo-nuclear translocation of cyclin D1 and p21(CIP1) was evident within 1 day and prominent at 2 and 7 day. Expression of p16(INK4a) increased immediately after TA treatment and remarkably increased from 3 day and progressed till 7 day, showing cytoplasmic location, suggestive of inactive form. Most of in situ immunoreactions occurred at the centrilobular hepatocytes. Concomitant nuclear translocation of p21(CIP1) and cyclin D1, different with p16(INK4a) suggests that p21(CIP1) might be a transporter for nuclear translocation rather than cell cycle inhibitor. CONCLUSIONS: Daily administration of low dose TA makes cell cycle open and G1 progress, possibly due to cyclin D1, CDK4 and CDK 6, their transporter p21(CIP1), and inactive p16(INK4a), which occur at quiescent hepatocytes, not stem cells.
Animals
;
Cell Cycle Proteins/*metabolism
;
Cyclin D1/metabolism
;
Cyclin-Dependent Kinase 4/metabolism
;
Cyclin-Dependent Kinase 6/metabolism
;
Cyclin-Dependent Kinase Inhibitor p16/metabolism
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
G1 Phase
;
Immunohistochemistry
;
Liver/*drug effects/enzymology/metabolism
;
Liver Diseases/chemically induced/metabolism/pathology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Thioacetamide/*toxicity
3.Artesunate inhibits proliferation of glioblastoma cells by arresting cell cycle.
Xiong WENG ; Shun-Qin ZHU ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2018;43(4):772-778
Glioblastoma is a common brain tumor and the overall survival rate of the patients is very low, so it is an effective way to develop the potential chemotherapy or adjuvant chemotherapy drugs in glioblastoma treatment. As a well-known antimalarial drug, artesunate(ARTs) has clear side effects, and recently it has been reported to have antitumor effects, but rarely reported in glioblastoma. Different concentrations of ARTs were used to treat the glioblastoma cells, and then the inhibitory effect of ARTs on glioblastoma proliferation was detected by MTT assay; Ki67 immunofluorescence assay was used to detect the proliferation of cells; Soft agar experiment was used to explain the clonal formation abilities ; Flow Cytometry was used to detect the cell cycle; and Western blot assay was used to determine the expression of key cell cycle protein. MTT assay results indicated that ARTs-treated glioblastoma cell A172, U251, U87 were significantly inhibited in a time-and-dose dependent manner as compared to the control group(DMSO treatment group). Soft agar experiment showed that ARTs could significantly reduce the clonal formation ability of glioblastoma. Furthermore, Flow cytometry analysis showed that ARTs could obviously increase the cell proportion in G₀/G₁ phase and reduce the cell proportion in S phase. Western blot results showed that the expressions of cell cycle-related proteins CDK2, CDK4, cyclin D1 and cyclin B1 were all obviously down-regulated. Above all, ARTs may inhibit the proliferation of glioblastoma cells by arresting cell cycle in G₀/G₁ phase through down-regulating the expression of CDK2, CDK4, cyclin D1, cyclin B1. These results may not only provide a novel method for rediscovering and reusing ARTs but also provide a new potential drug for treating glioblastoma.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Artesunate
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin B1
;
metabolism
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase 2
;
metabolism
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Glioblastoma
;
drug therapy
;
pathology
;
Humans
4.Cytoplasmic expression of CDK4 protein and its correlation with the clinicopathologic features and prognosis of lung cancer.
Yue ZHANG ; Ying ZHOU ; Zhen LIU ; Weiyi FANG
Journal of Southern Medical University 2012;32(11):1572-1575
OBJECTIVETo evaluate the correlation of CDK4 protein expression in the cytoplasm with the clinicopathologic features and prognosis of lung cancer.
METHODSImmunohistochemistry was employed to examine CDK4 protein expression in the cytoplasm of lung cancer samples, using normal lung tissue samples as control. The correlation of cytoplasmic CDK4 protein expression with the clinicopathologic parameters and prognosis of lung cancer patients was analyzed.
RESULTSNo significant difference was found in cytoplasmic CDK4 protein expression levels between lung cancer and normal lung tissues (P=1.000). In the lung cancer tissues, however, an increased cytoplasmic expression of CDK4 was positively correlated with the clinical stages and lymph node metastasis. Prognostic analysis showed that the patients with an increased cytoplasmic CDK4 expression had a markedly shorter overall survival than those with a low cytoplasmic CDK4 expression. Multivariate analysis suggested that the level of cytoplasmic CDK4 expression was an independent prognostic indicator for the survival of patients with lung cancer (P<0.001).
CONCLUSIONOverexpression of CDK4 protein in the cytoplasm may promote the carcinogenesis of lung cancer and can be an unfavorable prognostic factor for the survival of lung cancer patients.
Adult ; Aged ; Cyclin-Dependent Kinase 4 ; metabolism ; Cytoplasm ; metabolism ; Female ; Humans ; Lung Neoplasms ; metabolism ; pathology ; Male ; Middle Aged ; Prognosis
5.Differentiation of human promyelocytic leukemia HL-60 cells induced by proanthocyanidin and its mechanism.
Zhao-Yang XIE ; Bin-Hua WU ; Zhi-Gang YANG ; Xiao-Fang CHEN ; Qiu-Shen CHEN
Journal of Experimental Hematology 2013;21(4):920-925
This study was purposed to investigate the proliferation, differentiation and apoptosis of human promyelocytic leukemia HL-60 cells induced by proanthocyanidin (PAC). HL-60 cells were incubated with 20 mg/L PAC for 24 h, the cell growth was evaluated by CCK-8 assay. the effect of PAC on HL-60 cells was evaluated and the cells morphology was observed by optical microscopy. Expression of CD14 and CD11b, and cell cycle were analyzed by flow cytometry. The results showed that the growth of HL-60 cells was inhibited after treatment with PAC of different concentration in a dose-dependent manner (P < 0.05). 20 mg/L PAC displayed significant effect on HL-60 cells with inhibition ratio (72.3 ± 1.8)% for 24 h. Microscopy displayed that some cells differentiated to relative mature cells after treating for 48 h. Expression of CD14 increased and the expression of CD11b increased a little after treating with 20 mg/L PAC for 24 h, the ratio of cells in G0/G1 phase increased, but the ratio of cells in S phase decreased. The mRNA and protein expression of P21 gene increased, but the protein expression of CDK4 and Cyclin D1 decreased. It is concluded that PAC may inhibit the proliferation of HL-60 cells in vitro, induces the differentiation of HL-60 cells, and arrests the cells in G0/G1 phase. The possible mechanism may be related to up-regulation of P21 gene expression and down-regulation of the protein expression of CDK4 and Cyclin D1.
Cell Cycle Checkpoints
;
drug effects
;
Cell Differentiation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Gene Expression Regulation, Leukemic
;
HL-60 Cells
;
Humans
;
Proanthocyanidins
;
pharmacology
6.Effect of RhoC on hepatocellular carcinoma cell growth and related molecular mechanisms.
Shu-li XIE ; Ming-guang ZHU ; Guo-yue LÜ ; Guang-yi WANG
Chinese Journal of Oncology 2011;33(4):270-275
OBJECTIVETo clarify the role of RhoC in the growth of hepatocellular carcinoma cells and its molecular mechanism, so as to explore the molecular target of tumor cell growth.
METHODSsiRNA-RhoC plasmid was constructed and RhoC gene silencing the cell-line of hepatocellular carcinoma was setup. Cell growth was assessed by MTT assay. AgNORs staining was applied to determine cell proliferation. Plate cell clone test was conducted to examine the capacity of cell clone formation. FACS was adopted to measure the course of cell cycle and semi-quantitative RT-PCR was used to determine the expression of cell cycle proteins. In order to further determine the effect of RhoC expression on cell growth, a RhoC over-expression human hepatocellular cell line was setup by PcDNA3-RhoC plasmid transfection.
RESULTSThe inhibition rate of RhoC was 82.3%. From the fourth day of cell culture, the growth of cells in RNAi group was significantly slower than that in parental Bel7402 and negative control groups (0.41 ± 0.10 vs. 0.73 ± 0.11 and 0.71 ± 0.07 respectively, P < 0.05). AgNORs staining showed that average cell stained particles in RNAi group was significantly lower than that in parental Bel7402 and negative control(1.23 ± 0.35 vs. 3.47 ± 0.93 and 3.17 ± 0.78, P < 0.01). Plate clone formation test showed that clone formation efficiency in the RNAi group was notably lower than that in the control group [(20.33 ± 5.42)% vs. (70.58 ± 10.10)% and (69.83 ± 14.77)%, respectively, P < 0.01]. Cell cycle analysis by FACS showed that G(0)/G(1) cell percentage in the RNAi group was significantly higher than that in the control group [(73.14 ± 5.93)% vs. (57.05 ± 5.97)% and (52.99 ± 4.80)%, P < 0.05]. Compared with Bel7402 and negative control groups, the expression of following growth associated genes was significantly decreased: cyclin D1(0.45 ± 0.21 vs. 1.25 ± 0.24 and 1.12 ± 0.15, respectively, P < 0.05)and CDK4 (0.55 ± 0.08 vs. 1.18 ± 0.32 and 1.10 ± 0.29, respectively, P < 0.05); the following genes were notably increased: p16(1.07 ± 0.23 vs. 0.36 ± 0.12 and 0.35 ± 0.13, respectively, P < 0.01)and p21(0.42 ± 0.12 vs. 0.17 ± 0.06 and 0.19 ± 0.08, respectively, P < 0.05). RhoC was highly expressed in PcDNA3-RhoC transfected hepatocellular cell line. From the third day on of the cell culture, cell growth in PcDNA3-RhoC group was remarkably higher than that in the HL7702 and PcDNA3 groups (0.83 ± 0.10 vs. 0.54 ± 0.11 and 0.58 ± 0.55, respectively, P < 0.05).
CONCLUSIONSRhoC is the key molecule in promoting hepatocellular cell growth, and is a promising target for tumor cell growth controlling.
Carcinoma, Hepatocellular ; genetics ; metabolism ; pathology ; Cell Cycle ; Cell Line, Tumor ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p16 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Humans ; Liver Neoplasms ; genetics ; metabolism ; pathology ; Plasmids ; RNA Interference ; RNA, Small Interfering ; genetics ; Transfection ; rho GTP-Binding Proteins ; genetics ; metabolism ; rhoC GTP-Binding Protein
7.Expression of CDK4 and p16 in laryngeal squamous cell carcinoma.
Junxing ZHANG ; Manying GENG ; Lei SU ; Hui ZHANG ; Xing LU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(2):108-110
OBJECTIVE:
To investigate the expression of CDK4 and p16 in laryngeal squamous cell carcinoma (LSCC) tissues.
METHOD:
The expressions of CDK4 and p16 in 30 cases of LSCC tissues and 20 cases of edge tissues were detected by immunohistochemical technology SP method, and discuss their correlation with clincial pathology and clinical stage of LSCC.
RESULT:
The positive rates of CDK4 and p16 were 63. 3 %,46. 7% in LSCC tissues, and the positive rates were 25%, 90% in edge tissues. The expression of CDK4 in LSCC tissues was significantly higher than that in edge tissues(P<0. 05), which was not associated with the clincial pathology and clinical stage(P> 0. 05); The expression of p16 in LSCC tissues was significantly lower than that in edge tissues(P<0. 05), it was associated with the clincial pathology (P<0. 05), but not associated with clinical stage(P>0. 05) ;there is a negative correlation between CDK4 and p16 (r= -0. 786, P<0. 05).
CONCLUSION
Low expression of p16 and high expression of CDK4 may play an important role in the development of LSCC and the low expression of p16 in LSCC tissue could be used as important reference markers of malignant degree of tumour.
Biomarkers, Tumor
;
Carcinoma, Squamous Cell
;
metabolism
;
Cyclin-Dependent Kinase 4
;
biosynthesis
;
Cyclin-Dependent Kinase Inhibitor p16
;
biosynthesis
;
Head and Neck Neoplasms
;
metabolism
;
Laryngeal Neoplasms
;
metabolism
;
Prognosis
;
Squamous Cell Carcinoma of Head and Neck
8.siRNA-mediated CDK6 knockdown suppresses nasopharyngeal carcinoma cell growth and cell cycle transition in vitro.
Xiaopeng LUO ; Qiong XIA ; Jixin QIN ; Yongzhi HUANG ; Jin LIU ; Ying WANG ; Huaifei WANG ; Jiajun CHEN
Journal of Southern Medical University 2014;34(7):1071-1074
OBJECTIVETo assess the effect of small interfering RNA (siRNA)-mediated suppression of CDK6 expression on the proliferation and cell cycles of nasopharyngeal carcinoma (NPC) cells in vitro.
METHODSQRT-PCR was used to examine the differential expression of CDK6 in 30 NPC tissues and 18 normal nasopharyngeal tissues. A siRNA targeting CDK6 was transfected in NPC CNE2 cells, and MTT assay and flow cytometry were used to analyze the changes in cell proliferation and cell cycle distribution. Western blotting was used to examine the expressions of the cell cycle-related factors.
RESULTSCompared with normal nasopharyngeal tissues, NPC tissues showed an increased expression of CDK6 mRNA. Knocking down CDK6 expression obviously inhibited tumor cell growth and cell cycle transition from G1 to S phase and caused reduced expressions of CDK4, CCND1, and E2F1 and enhanced expression of the tumor suppressor p21.
CONCLUSIONNPC tissues overexpress CDK6. Knocking down CDK6 expression inhibits the growth and cell cycle transition of NPC cells in vitro by inhibiting the expressions of CDK4, CCND1, and E2F1 and upregulating tumor suppressor p21 expression.
Carcinoma ; Cell Cycle ; Cell Line, Tumor ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; metabolism ; Cyclin-Dependent Kinase 6 ; genetics ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; E2F1 Transcription Factor ; metabolism ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Humans ; Nasopharyngeal Neoplasms ; pathology ; RNA, Messenger ; RNA, Small Interfering ; Transfection ; Up-Regulation
9.Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro.
Hua LIU ; Xiao-hua HAN ; Hong CHEN ; Cai-xia ZHENG ; Yi YANG ; Xiao-lin HUANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):766-772
Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600-1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.
Animals
;
Animals, Newborn
;
Biomarkers
;
metabolism
;
Cell Proliferation
;
genetics
;
Cyclin-Dependent Kinase 2
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p57
;
genetics
;
metabolism
;
Cyclins
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Hippocampus
;
cytology
;
metabolism
;
Ki-67 Antigen
;
genetics
;
metabolism
;
Magnetic Fields
;
MicroRNAs
;
genetics
;
metabolism
;
Neural Stem Cells
;
cytology
;
metabolism
;
Primary Cell Culture
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
10.The influence of different nutritional support routes on the intestinal mucosal epithelial cell cycle in burned rats.
Fengjun WANG ; Shiliang WANG ; Yun ZHAO ; Zhongyi YOU ; Pei WANG ; A VALLETE
Chinese Journal of Burns 2002;18(4):203-206
OBJECTIVETo explore the influence of different nutritional support routes on the intestinal mucosal epithelial cell cycle in burned rats.
METHODSSixty-six Wistar rats inflicted with 30% TBSA III degree burns on the back were employed as the model and were randomly divided into enteral feeding group (EF) and intravenously parenteral nutrition group (PN). Equal volume of nutritional support fluid containing predetermined equal amount of calories and nitrogen was applied via feeding or intravenously infusion through external jugular vein. The indices were observed on 6, 12, 24, 48 and 72 postburn hours (PBHs) with the reference to those in 6 normal rats. The intestinal epithelial cell cycle in jejunal and ileal mucous membrane was analyzed by flow cytometry. Western blotting method was employed in the examination of the expression of cyclin D1, E and that of cyclin dependent kinase (CDK)2 and CDK4.
RESULTS(1) lntestinal mucosal epithelial G0/G1 ratio in jejunum in EF group was significantly lower than that in PN group at 72 PBHs (P < 0.05). While the ratio in ileum in EF was obviously higher than that in PN groups at 6, 12, 48 and 72 PBHs (P < 0.05). (2) The cell percentage of S phase in EF group was evidently higher than that in PN group (P < 0.05 - 0.01) at 48 and 72 PBHs. (3) Intestinal mucosal cyclin D1 expression increased significantly in EF group at 24 PBHs and in PN group at 48 PBHs (P < 0.05) and which in EF group was obviously higher than that in PN group at 72 PBHs (P < 0.05). (4) The expression of the intestinal mucosal cyclin E in EF group at 72 PBHs was evidently higher than the control value and that in PN group (P < 0.05). (5) The expression of CDK2 exhibited no obvious difference among PN,EF and control group (P < 0.05). The CDK4 expression in EF group increased obviously at 72 PBHs (P < 0.05).
CONCLUSIONEarly postburn enteral feeding was beneficial to the progression of intestinal mucosal epithelial cell cycle and to the repairing and renovation of injured intestinal mucosal membrane. Cyclin and CDK might be important in the modulation of the intestinal mucosal epithelial cell cycle.
Animals ; Burns ; metabolism ; pathology ; CDC2-CDC28 Kinases ; Cell Cycle ; physiology ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinases ; metabolism ; Disease Models, Animal ; Enteral Nutrition ; Female ; G1 Phase ; physiology ; Intestinal Mucosa ; metabolism ; pathology ; Male ; Protein-Serine-Threonine Kinases ; metabolism ; Proto-Oncogene Proteins ; Rats ; Rats, Wistar ; Resting Phase, Cell Cycle ; physiology ; S Phase ; physiology