1.Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway.
You-Chao QI ; Guo-Zhen DUAN ; Wei MAO ; Qian LIU ; Yong-Liang ZHANG ; Pei-Feng LI
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):898-906
Taurochenodeoxycholic acid (TCDCA) is one of the main effective components of bile acid, playing critical roles in apoptosis and immune responses through the TGR5 receptor. In this study, we reveal the interaction between TCDCA and TGR5 receptor in TGR5-knockdown H1299 cells and the regulation of inflammation via the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding (CREB) signal pathway in NR8383 macrophages. In TGR5-knockdown H1299 cells, TCDCA significantly activated cAMP level via TGR5 receptor, indicating TCDCA can bind to TGR5; in NR8383 macrophages TCDCA increased cAMP content compared to treatment with the adenylate cyclase (AC) inhibitor SQ22536. Moreover, activated cAMP can significantly enhance gene expression and protein levels of its downstream proteins PKA and CREB compared with groups of inhibitors. Additionally, TCDCA decreased tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-12 through nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity. PKA and CREB are primary regulators of anti-inflammatory and immune response. Our results thus demonstrate TCDCA plays an essential anti-inflammatory role via the signaling pathway of cAMP-PKA-CREB induced by TGR5 receptor.
Animals
;
Cell Line
;
Cyclic AMP/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cytokines/metabolism*
;
Humans
;
Inflammation
;
Macrophages
;
Rats
;
Receptors, G-Protein-Coupled/metabolism*
;
Signal Transduction/drug effects*
;
Taurochenodeoxycholic Acid/pharmacology*
2.Effects of baicalin on contents of PGE2 and cAMP in hypothalamus of fever rats.
Hong-Yan ZHAO ; Fan ZHANG ; Shu-Duo FAN
Chinese Journal of Applied Physiology 2002;18(2):139-141
AIM AND METHODSBoth PGE2 and cAMP are important neural mediator of fever. In order to discuss if PGE2 and cAMP are involved in the antipyretic mechanism of baicalin, fever models of rats were made by i.v. injection of endotoxin (ET). The antipyretic action and effects of baicalin on contents of PGE2 and cAMP in hypothalamus were observed.
RESULTSBaicalin possessed obvious antipyretic effect on fever rats and reversed the effect of ET on contents of PGE2 and cAMP in hypothalamus. Correlation analysis showed that contents of PGE2 and cAMP in hypothalamus were positively correlated with the change of body temperature of rats.
CONCLUSIONBaicalin may exert its antipyretic effect on fever rats by inhibiting increase of contents of PGE2 and cAMP in hypothalamus.
Animals ; Cyclic AMP ; metabolism ; Dinoprostone ; metabolism ; Fever ; metabolism ; Flavonoids ; pharmacology ; Hypothalamus ; drug effects ; metabolism ; Male ; Rats ; Rats, Wistar
3.Effects of berberine on cyclic GMP and cyclic AMP levels in rabbit corpus cavernosum in vitro.
Yan TAN ; Qiang TANG ; Ben-Rong HU ; Ji-Zhou XIANG
National Journal of Andrology 2005;11(6):406-408
OBJECTIVETo further investigate the action mechanisms of berberine (Ber), and assess the effects of Ber on the in vitro formation of cGMP and cAMP in the isolated rabbit corpus cavernosum.
METHODSIsolated segments of the rabbit corpus cavernosum were exposed to different concentrations of Ber, and, the dosage-dependent accumulations of cGMP and cAMP were determined in the tissue samples by means of 125I radioimmunoassay. Responses of the isolated tissue preparations to Ber were compared with those obtained with the reference compound sildenafil (Sil).
RESULTSBer increased cGMP concentrations directly (P < 0.05). In the presence of sodium nitroprusside (SNP), a stimulatory agent of cGMP, both Ber and Sil increased cGMP with increasing dosage (P < 0.01), the EC, values being 1.32 and 0.67 micromol/L respectively. With the same concentration, neither Ber nor Sil influenced the cAMP level significantly (P > 0.05). In the presence of PGE1, a stimulator of cAMP, Ber and Sil also raised the cAMP level concentration (P < 0.01 ), the EC, values being 4.90 (Ber) and 6.53 (Sil) micromol/L respectively.
CONCLUSIONBer can increase cGMP and cAMP concentrations in the corpus cavernosum smooth muscles, which may contribute to its action of relaxing corpus cavernosum smooth muscles.
Animals ; Berberine ; pharmacology ; Cyclic AMP ; metabolism ; Cyclic GMP ; metabolism ; Dose-Response Relationship, Drug ; In Vitro Techniques ; Male ; Muscle, Smooth ; drug effects ; metabolism ; Penis ; drug effects ; metabolism ; Rabbits ; Radioimmunoassay
4.Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats.
Jing-Zhi JIANG ; Qian SUN ; Dong-Yuan XU ; Mo-Han ZHANG ; Li-Hua PIAO ; Ying-Lan CAI ; Zheng JIN
Acta Physiologica Sinica 2013;65(2):224-228
The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.
Adenylyl Cyclases
;
metabolism
;
Animals
;
Colforsin
;
pharmacology
;
Cyclic AMP
;
pharmacology
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Isoquinolines
;
pharmacology
;
Muscle, Smooth
;
drug effects
;
Pyloric Antrum
;
drug effects
;
Rats
;
Rats, Wistar
;
Sulfonamides
;
pharmacology
6.The effects of antisenes oligodeoxynucleotide on the cyclic nucleotide monophosphates in smooth muscle cells of human corpus cavernosum.
Wen-Jun BAI ; Shu-Kun HOU ; Xiao-Feng WANG ; Zheng YAN ; Pei-Ying HE ; Qing-Ping DENG ; Xiao-Peng HU ; Kao-Peng GUAN
National Journal of Andrology 2002;8(2):88-91
OBJECTIVESTo investigate the effects of antisense oligodeoxynucleotide(ASON) on the cyclic nucleotide monophosphates (cNMP) in smooth muscle cells of human corpus cavernosum, and provide experimental groundwork for the gene therapy of erectile dysfunction.
METHODSPDE5 gene ASON(containing exon 1) was transfected into the corpus cavernosum smooth muscle cells with the presence of liposome DOTAP. Another sense oligodeoxynucleotide(SON) and 1% of bovine serum were also transducted into the cells as controls. Two of cNMP, cAMP and cGMP, were probed and measured by ELISA at 1, 2, 4, 6, 10, 24 and 48 h after transfection.
RESULTSAfter transfection, the level of cGMP(1-6 h) in human corpus cavernosum smooth muscle cells was significantly higher than that in controls(P < 0.01).
CONCLUSIONSThe PDE5 gene ASON had been showed to manifest stimulative effect on the cGMP in smooth muscle cells of human corpus cavernosum in vitro, and it provides experimental groundwork for the gene therapy of erectile dysfunction.
3',5'-Cyclic-GMP Phosphodiesterases ; antagonists & inhibitors ; genetics ; Cyclic AMP ; metabolism ; Cyclic GMP ; metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 5 ; Humans ; Male ; Muscle, Smooth ; drug effects ; metabolism ; Oligodeoxyribonucleotides, Antisense ; pharmacology ; Penis ; cytology
7.New Frontiers in Pharmacology.
Yonsei Medical Journal 1979;20(2):87-91
8.Effects of protopine on intracellular calcium and the PKC activity of rat aorta smooth muscle.
Bin LI ; Qin WU ; Jing-Shan SHI ; An-Sheng SUN ; Xie-Nan HUANG
Acta Physiologica Sinica 2005;57(2):240-246
We have previously shown that the vasodilator effect of protopine (Pro) on rabbit aorta is related to the elevations of cAMP and cGMP. In the present study, the vasodilator mechanisms of Pro were further explored by recording the isotonic contraction of the rat aortic strips, detecting directly the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with Fura-2/AM loaded vascular smooth muscle cells (VSMCs) of rat aorta, and determining the activity of protein kinase C (PKC) in rat aortic tissue with radioactive isotope gamma-32P -ATP-catalyzing assay. By recording the aortic strips contraction induced by noradrenaline (NA) and high potassium (K(+)), Pro shifted nonparallelly the concentration-response curves of NA and high K(+) to right, in which the maximal response was depressed in the presence of Pro (30 and 100 micromol/L), and the values of pD'(2) were 3.70-/+0.25 and 3.97-/+0.15 for NA and high K(+), respectively. In the Fura-2/AM loaded VSMCs, Pro (50 and 100 micromol/L) could not produce any significant change on the resting [Ca(2+)](i), but significantly decreased the [Ca(2+)](i) elevated by NA and high K(+). Pro (30 and 100 micromol/L) had no significant effect on the activity of the cytosolic and membrane PKC in the aortic strips inpretreated by NA. However, in the aortic strips pretreated by NA, the activity of membrane PKC was significantly increased and the activity of cytosolic PKC tended to be decreased by Pro, while the activity of total PKC did not change. These results suggest that Pro seems to promote the translocation of PKC from the cytosol to the membrane in the presence of NA, its vasodilator effect may be the comprehensive result of its decreasing effect on the [Ca(2+)](i) and the increasing effect on cAMP and cGMP, as well as its influence on the PKC.
Animals
;
Aorta, Thoracic
;
cytology
;
Benzophenanthridines
;
pharmacology
;
Berberine Alkaloids
;
pharmacology
;
Calcium
;
metabolism
;
Cells, Cultured
;
Cyclic AMP
;
metabolism
;
Cyclic GMP
;
metabolism
;
In Vitro Techniques
;
Male
;
Muscle, Smooth, Vascular
;
cytology
;
metabolism
;
Norepinephrine
;
pharmacology
;
Protein Kinase C
;
metabolism
;
Rats
;
Rats, Wistar
;
Vasodilator Agents
;
pharmacology
9.Multi-facet expressions of adenylate cyclase isoforms in B16-F10 melanoma cells differentiated by forskolin treatment.
Du Hyong CHO ; Chang Dae BAE ; Yong Sung JUHNN
Experimental & Molecular Medicine 2000;32(4):235-242
The terminal differentiation of malignant melanoma cells is known to be induced by activating cAMP signaling pathway with alpha-MSH or cAMP analogues. However, sustained activation of cAMP signaling system that induces the differentiation of melanoma cells, also induces the desensitization of the pathway at the receptor level. Nevertheless, the adaptation of adenylate cyclase (AC) expression by sustained activation of cAMP signaling system has not been clearly understood. This study was performed to examine whether the sustained activation of cAMP system induce changes in the expression AC isoforms as an adaptation mechanism. Treatment of B16/F10 murine melanoma cells with 100 mM forskolin for 6 days resulted in differentiation, melanin accumulation and increased expression of tyrosine hydroxylase mRNA. In the forskolin-treated melanoma cells, change in expression of various AC isoform at the transcription level was detected by reverse-transcription polymerase chain reaction (RT-PCR). Expression of AC isoform mRNA: ACI, III, VI, VII, and IX increased to the level of 196-392% of the control whereas the level of ACII was decreased by 30%. The cAMP concentration was increased both in basal and alpha-MSH stimulated cells, but the AC activity was decreased in the forskolin treated cells. Thus, these results suggest that sustained activation of cAMP system induces differential expression of AC isoforms, which results in increase of cAMP accumulation.
Adenylate Cyclase/*genetics
;
Animal
;
Cell Differentiation
;
Cyclic AMP/*metabolism
;
Forskolin/*pharmacology
;
Isoenzymes/genetics
;
Melanoma, Experimental/*enzymology/*pathology
;
Mice
;
Signal Transduction
10.Downstream molecular events in the altered profiles of lysophosphatidic acid-induced cAMP in senescent human diploid fibroblasts.
Ik Soon JANG ; Ji Heon RHIM ; Sang Chul PARK ; Eui Ju YEO
Experimental & Molecular Medicine 2006;38(2):134-143
Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ia. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.
Time Factors
;
Protein Kinase Inhibitors/pharmacology
;
Phosphorylation
;
Male
;
Lysophospholipids/*pharmacology
;
Luciferases/genetics/metabolism
;
Humans
;
Gene Expression/drug effects
;
Fibroblasts/cytology/*drug effects/metabolism
;
Diploidy
;
Cyclic AMP-Dependent Protein Kinases/genetics/metabolism
;
Cyclic AMP Response Element-Binding Protein/metabolism
;
Cyclic AMP/*metabolism
;
Cells, Cultured
;
Cell Aging/physiology
;
Catalytic Domain/genetics