1.Epidemiological characteristics and spatial-temporal clustering of severe fever with thrombocytopenia syndrome in Huai'an City from 2011 to 2024
XIA Wenling ; GAO Qiang ; LI Yang ; CAI Ben ; WAN Chunyu ; CUI Zhizhen ; ZHANG Zheng ; PAN Enchun
Journal of Preventive Medicine 2026;38(1):55-59,65
Objective:
To investigate the epidemiological characteristics and spatial-temporal clustering of severe fever with thrombocytopenia syndrome (SFTS) in Huai'an City, Jiangsu Province from 2011 to 2024, so as to provide a basis for optimizing local SFTS prevention and control strategies, and identifying high-risk areas and key populations.
Methods:
Data on SFTS incidence and deaths in Huai'an City from 2011 to 2024 were collected from the Infectious Disease Reporting Information System of the Chinese Disease Prevention and Control Information System. The reported incidence, mortality, and fatality rates were calculated. Descriptive analysis was performed on temporal, population, and regional distribution. The average annual percent change (AAPC) was used to analyze the trend in the reported incidence of SFTS. Global and local spatial autocorrelation analyses were employed to examine the spatial distribution patterns and spatial association patterns of SFTS incidence while spatio-temporal scanning analyses was used to assess the spatial-temporal clustering of SFTS.
Results:
A total of 337 SFTS cases were reported in Huai'an City from 2011 to 2024, with the reported incidence rising from 0.17/100 000 to 1.88/100 000. There were 20 deaths, with an average annual mortality of 0.03/100 000, and a fatality rate of 5.93%. The incidence showed obvious seasonality, with a peak in May and June (148 cases, accounting for 43.92%). Spring and summer accounted for 107 cases (31.75%) and 159 cases (47.18%), respectively. The reported SFTS cases were mainly male, farmers, and individuals aged ≥41 years, accounting for 56.38%, 79.23%, and 96.74%, respectively. The population distribution of death cases was basically consistent with that of incident cases. Xuyi County was a high-incidence area, with a total of 332 reported cases, accounting for 98.52%. All death cases were reported in this county. Spatial autocorrelation analyses revealed a positive spatial correlation in SFTS incidence from 2019 to 2024, with Moran's I values ranging from 0.214 to 0.336 (all P<0.05). Heqiao Town, Tianquanhu Town, and Guiwu Town in Xuyi County were identified as high-high clustering areas. Spatio-temporal scanning analyses showed that cluster 1 was consistent with the high-high clustering areas, with an aggregation time from the second quarter of 2019 to the second quarter of 2022.
Conclusions
From 2011 to 2024, the reported incidence of SFTS in Huai'an City showed an upward trend, with a high incidence in spring and summer. Males, farmers, and the middle-aged and elderly population were the key populations for prevention and control. Xuyi County was the key area for prevention and control.
2.Genomic characteristics and phylogenetic analyses of enteroaggregative Escherichia coli infection in diarrhea outpatients in Pudong New Area, Shanghai
Qiqi CUI ; Yuchen LU ; Suping WU ; Yinwen ZHANG ; Bing ZHAO ; Lifeng PAN ; Yingjie ZHENG ; Lipeng HAO
Shanghai Journal of Preventive Medicine 2025;37(4):342-349
ObjectiveTo investigate the whole genomic characteristics and phylogenetic relationships of clinical isolates of enteroaggregative Escherichia coli (EAEC) in diarrhea outpatients in Pudong New Area, Shanghai. MethodsBased on the diarrheal disease surveillance network in Pudong New Area, Shanghai, whole-genome sequencing was performed on a total of 55 EAEC strains isolated from fecal samples of the diarrhea outpatients from January 2015 to December 2019. The genome analyses based on raw sequencing data encompassed genome size, coding genes, dispersed repeat sequences, genomic islands, and protein coding regions, and pan-genome analyses were conducted simultaneously. Contigs sequences assays were performed to analyze molecular characteristics including serotypes, antibiotic resistance genes, and virulence factors. The phylogenetic clusters and multilocus sequence typing (MLST) were identified, and a phylogenetic tree was constructed. ResultsEAEC exhibited an open pan-genome. The predominant serotype of EAEC in diarrhea outpatients in Pudong New Area was O130:H27, and the carriage rate of β-lactam resistance genes was the highest (67.27%, 37/55). A total of 29 virulence factors and 106 virulence genes were identified, phylogenic group B1 was the predominant group, and clonal group CC31 was the dominant clonal group. The strain distribution was highly heterogeneous. ConclusionThe genomic characteristics of EAEC displayed significant strain polymorphism. It is necessary to develop effective strategies for differential diagnosis and improve detection capabilities for infection with EAEC of different serotypes and genotypes.
3.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Staphylococcus aureus bloodstream infection in a Chinese tertiary-care hospital: A single-center retrospective study.
Cheng ZHENG ; Qingqing CHEN ; Sijun PAN ; Yuanyuan LI ; Li ZHONG ; Xijiang ZHANG ; Wei CUI ; Ronghai LIN ; Gensheng ZHANG ; Shufang ZHANG
Chinese Medical Journal 2023;136(12):1503-1505
6.Antimicrobial susceptibility of Gram-positive organisms:Results from China antimicrobial resistance surveillance trial(CARST)program,2021-2022
Yun LI ; Bo ZHENG ; Feng XUE ; Xiu-Zhen ZHANG ; Yun-Jian HU ; Yu-Fen JIN ; Jian-Hong ZHAO ; Shi-Yang PAN ; Wei GUO ; Feng ZHAO ; Yun-Song YU ; Xuan CAI ; Wen-En LIU ; De-Hua LIU ; Ying FEI ; Jia-Yun LIU ; Feng-Yan PEI ; Ling MENG ; Ping JI ; Jin TANG ; Kai XU ; Lei ZHU ; Cun-Wei CAO ; He-Ping XU ; Shan WANG ; Lan-Qing CUI ; Jia ZHANG ; Yao-Yao LIU
The Chinese Journal of Clinical Pharmacology 2023;39(23):3509-3524
Objective To investigate the Gram-positive coccus resistance in nationwide's tertiary hospitals and understand the trend of antimicrobial resistance.Methods All the clinical isolates were collected from 19 hospitals and the minimal inhibitory concentrations(MICs)were tested using agar/broth dilution method recommended.Results A total of 1 974 pathogenic Gram-positive coccus from 19 tertiary hospitals in 19 cities nationwide over the period from July 2021 to June 2022 were studied.Based on the MIC results,the prevalence of methicillin resistant Stapylococcus aureus(MRSA)and methicillin resistant Stapylococcus epidermidis(MRSE)were 36.4%and 79.9%respectively.No vancomycin insensitivity Staphylococcus was detected.Staphylococcus aureus were 100%susceptibility to linezolid and teicoplanin.Antibiotic resistance rate of Enterococcus faecalis and Enterococcus faecium to ampicillin were 3.1%and 92.9%.The detectation rate of vancomycin resistant Enterococcus(VRE)was 1.6%.Nonsusceptibility rate of Enterococcus faecalis to linezolid was 32.2%,two consecutive monitoring rises and nonsusceptibility rate of Enterococcus faecium(12.5%)was also significantly increased.The prevalence of penicillin non-susceptible Streptococcus pneumoniae(PNSSP)was 0.8%based on non-meningitis and parenteral administration criterion,decrease of nearly 30 percentage points from the previous surveillance.While for cases of oral penicillin,the rate was 71.8%,showing similar to last time.The results indicated that the number of strains with higher MIC value of penicillin(MIC ≥4 mg·L-1)decreased significantly.There were no significant differences of resistance rates of Stapylococcus aureus,Stapylococcus epidermidis,Enterococcus faecalis,Enterococcus faecium and Streptococcus pneumoniae among various groups such as different department,age,or specimen source.Conclusion VRE detection ratio stablized at a relatively low level.The number of Streptococcus pneumoniae with higher MIC value of penicillin decreased significantly compared with the previous monitoring.The increase of linezolidin-insensitive Enterococcus was noteworthy.
7.Antimicrobial susceptibility of Gram-negative organisms:Results from China antimicrobial resistance surveillance trial(CARST)program,2021-2022
Yun LI ; Bo ZHENG ; Feng XUE ; Xiu-Zhen ZHANG ; Yun-Jian HU ; Yu-Fen JIN ; Jian-Hong ZHAO ; Shi-Yang PAN ; Wei GUO ; Feng ZHAO ; Yun-Song YU ; Xuan CAI ; Wen-En LIU ; De-Hua LIU ; Ying FEI ; Jia-Yun LIU ; Feng-Yan PEI ; Ling MENG ; Ping JI ; Jin TANG ; Kai XU ; Lei ZHU ; Cun-Wei CAO ; He-Ping XU ; Shan WANG ; Lan-Qing CUI ; Jia ZHANG ; Yao-Yao LIU
The Chinese Journal of Clinical Pharmacology 2023;39(23):3525-3544
Objective To investigate the Gram-negative bacteria resistance in nationwide's tertiary hospitals and understand the trend of antimicrobial resistance.Method All the clinical isolates were collected from 19 hospitals and the minimal inhibitory concentrations(MICs)were tested using agar/broth dilution method recommended.Results A total of 4 066 pathogenic isolates from 19 tertiary hospitals in 19 cities nationwide over the period from July 2021 to June 2022 were studied.Based on the MIC results,Escherichia coli and Klebsiella pneumoniae showed extended spectrum β-lactamase(ESBLs)phenotype rates of 55.0%and 21.0%,respectively,ESBLs phenotype rate of Klebsiella pneumoniae keep going down.The ratios of carbapenems resistance Klebsiella pneumoniae increased by 5 percentage points compared with the previous monitoring.Carbapenems,moxalactam,sitafloxacin,β-lactam combination agents,fosfomycin trometamol,and amikacin displayed desirable antibacterial activity against Enterbacterales,susceptibal rates were above 75%.In addition,tigacycline,omacycline,colistin and fluoxefin maintained good antibacterial activity against their respective effective bacteria/species,and the bacterial sensitivity rates by more than 80%.Resistance rates of Pseudomonas aeruginosa and Acinetobacter baumannnii to imipenem were 26.3%and 72.1%and multidrug-resistant(MDR)detection rates were 41.1%and 77.3%,extensively drug-resistant(XDR)were 12.0%and 71.8%,respectively.Comparison of drug resistance rates from different wards,ages and specimen sources indicated that the proportion of resistance in Klebsiella pneumoniae and Acinetobacter baumannii isolated from intensive care unit(ICU)were significantly higher than non-ICU.Carbapenem resistance rates of Klebsiella pneumoniae isolated from ICU were more than 35%.Resistance rates of Haemophilus influenzae isolated in children to β-lactam,macrolide,clindamycin and ESBLs detection rate in Klebsiella pneumoniae isolated from children were more than those from adults and the old people,so bacterial resistance in children is an important problem in China.Conclusion ESBLs detection rate of Escherichia coli increased slightly after years of continuous decline.The proportion of carbapenem resistant Pseudomonas aeruginosa was stable,but the resistance rate of Klebsiella pneumoniae and Acinetobacter baumannii to carbapenems was still increased,which should be paid more attention.
8.Effect of coronavirus disease 2019 pandemic on the epidemiological characteristics of scarlet fever in Shanghai City
Dechuan KONG ; Qi QIU ; Ruobing HAN ; Yaxu ZHENG ; Chenyan JIANG ; Xianjin JIANG ; Peng CUI ; Ye WANG ; Fangfang TAO ; Jian CHEN ; Hao PAN ; Huanyu WU
Chinese Journal of Infectious Diseases 2022;40(7):406-410
Objective:To analyze the changes in the epidemiological characteristics of scarlet fever cases in Shanghai City before and after the outbreak of coronavirus disease 2019 (COVID-19), and to provide a reference for scientific prevention and control of scarlet fever.Methods:The information of scarlet fever reported cases in Shanghai City from January 2016 to June 2021 in the information system of Chinese Disease Prevention and Control was collected, and the differences in time trend, regional distribution, age and gender distribution of cases before and after the outbreak of COVID-19 in Shanghai City were analyzed by descriptive epidemiologic method.Results:The incidence rate of scarlet fever reported in 2016-2019 was (0.22-4.02)/100 000 in each month, with a median of 1.13/100 000. During January 2020 (the outbreak began in Shanghai City) and June 2021, the incidence rate of scarlet fever was (0.01-1.64)/100 000, with a median of 0.14/100 000, which was 12.39% of that before the outbreak of COVID-19. During February and June 2020, the monthly reported incidence rate of scarlet fever was (0.18-0.58)/100 000, showing an upward trend compared with the same period in 2020 ((0.01-0.05)/100 000). From 2016 to 2019, the annual reported incidence rate of each district was (0.55-65.48)/100 000, with a median of 9.57/100 000; while in 2020, the annual reported incidence rate of each district was (0.29-9.85)/100 000, with a median of 2.18/100 000, which was 22.78% of that before the outbreak of COVID-19. The incidence of scarlet fever dropped significantly. The incidence rate in Minhang District was still the highest. The cases were mainly four to eight years old, and there was no substantial difference of the proportions before and after COVID-19 pandemic, with the incidence rate of six years old group the highest. The proportion of male was more than female in reported case, while the male ratio in reported cases was not significantly different before and after COVID-19 pandemic.Conclusions:The incidence rate of scarlet fever in Shanghai City has dropped sharply after COVID-19 pandemic. The main epidemiological characteristics of the regional and population distribution of cases remain unchanged.
9.Variability in reference for serum metabolomics profiles among healthy Han people in different regions of China
Ye WANG ; Qianqian LIU ; Zhi ZHENG ; Feng LIU ; Jianwei DU ; Li PAN ; Xiaolan REN ; Hailing WANG ; Ze CUI ; Xia PENG ; Jingbo ZHAO ; Huijing HE ; Wei SUN ; Xiaoyan LIU ; Guangliang SHAN
Chinese Journal of Endocrinology and Metabolism 2022;38(6):475-482
Objective:To establish the reference for serum metabolomics profiles among healthy Han adults in China, and explore the variation on metabolomics profiles by geographic regions, sex, and age.Methods:Cross-sectional data and serum samples were obtained from the China National Health Survey. A total of 1 039 male and 1 032 female healthy adults(≥30 years) were included in this study. Serum metabolomics analyses were conducted with ultra-performance liquid chromatography-mass spectrometry(UPLC-MS). Orthogonal partial least squares discriminant analysis(OPLS-DA) was performed to compare the differences of metabolomics among different region, sex, and age.Results:Significant differences on metabolomics profiles were identified among region, sex, and age. A total of 114 region-related metabolites were spotted, including 53 metabolites that involved in human metabolic pathways, mainly peptides(20 metabolites) and glycerophospholipid metabolism-related(14 metabolites). Fifty-nine metabolites were pinned down to be sex-related, among which cotinine was significant in all 7 provinces. Age-related metabolites were only found in Shaanxi and Hainan, with 22 metabolites were recognized.Conclusion:Serum metabolomics varies by geographic regions, sex, and age. When metabolomics is applied for diagnosis or biomarker screening in various studies, it shall take into consideration of setting tailored references.
10.Dihydromyricetin mediates epithelial mesenchymal transformation and regulates the proliferation and apoptosis of esophageal squamous cell carcinoma cells.
Ya Ping TIAN ; Yi Shuang CUI ; Xuan ZHENG ; Bao Lin LIU ; Yong Pan ZHANG ; Kun Peng WEI ; Zhi ZHANG ; Wan Ning HU ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2022;44(4):326-333
Objective: To study the effects of dihydromyricetin (DMY) on the proliferation, apoptosis and epithelial mesenchymal transition (EMT) of esophageal squamous cell carcinoma (ESCC) cell KYSE150 and KYSE410. Methods: KYSE150 and KYSE410 cells were treated with different concentrations of DMY (0, 25, 50, 100, 150, 200 μmol/L) for 24 hours. The median inhibition concentration (IC50) values of KYSE150 and KYSE410 were detected by cell counting kit-8 (CCK-8) method. Then 0.5‰ dimethyl sulfoxide (DMSO) was used as control group, dihydromyricetin (DMY), dihydromyricetin and transforming growth factor-β1 (DMY+ TGF-β1), transforming growth factor-β1 (TGF-β1) were used as experimental group. Cell proliferation and apoptosis rates were measured by clonal formation and flow cytometry. Transwell invasion and wound healing assay were used to detect cell invasion and migration. The protein expression levels of Caspase-3, Caspase-9, Bcl-2, Bax, Smad2/3, phosphorylation-Smad2/3 (p-Smad2/3) and Vimentin were detected by western blot. Results: The IC50 values of DMY on KYSE410 and KYSE150 cells were 100.51 and 101.27 μmol/L. The clone formation numbers of KYSE150 and KYSE410 in DMY group [(0.53±0.03) and (0.31±0.03)] were lower than those in DMSO group [(1.00±0.10) and (1.00±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in DMY group [(1.84±0.22)% and (2.80±0.07)%] were higher than those in DMSO group [(1.00±0.18)% and (1.00±0.07)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in DMY group [(0.42±0.03) and (0.29±0.05)] were lower than those in DMSO group [(1.00±0.08) and (1.00±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in DMY group [(0.65±0.14)% and (0.40±0.17)%] were lower than those in DMSO group [(1.00±0.10)% and (1.00±0.08)%, P<0.05]. The clone formation numbers of KYSE150 and KYSE410 in TGF-β1 group [(1.01±0.08) and (0.99±0.25)] were higher than those in DMY+ TGF-β1 group [(0.73±0.10) and (0.58±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in TGF-β1 group [(0.81±0.14)% and (1.18±0.10)%] were lower than those in DMY+ TGF-β1 group [(1.38±0.22)% and (1.85±0.04)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in TGF-β1 group [(1.19±0.11) and (1.39±0.11)] were higher than those in DMY+ TGF-β1 group [(0.93±0.09) and (0.93±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in TGF-β1 group [(1.87±0.19)% and (1.32±0.04)%] were higher than those in DMY+ TGF-β1 group [(0.86±0.16)% and (0.77±0.12)%, P<0.05]. The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY group were higher than those in DMSO group, while the protein expression level of Bcl-2 was lower than that in DMSO group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in DMY group were lower than those in DMSO group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in TGF-β1 group were lower than those in DMY+ TGF-β1 group, and the protein expression level of Bcl-2 was higher than that in DMY+ TGF-β1 group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY+ TGF-β1 group were lower than those in DMY group, and the protein expression level of Bcl-2 was higher than that in DMY group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in TGF-β1 group were higher than those in DMY+ TGF-β1 group (P<0.05). Conclusion: DMY can inhibit the proliferation and EMT of ESCC mediated by TGF-β1 and promote cell apoptosis.
Apoptosis
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Dimethyl Sulfoxide/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Esophageal Neoplasms/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Flavonols
;
Humans
;
Signal Transduction
;
Transforming Growth Factor beta1/pharmacology*
;
Vimentin/metabolism*
;
bcl-2-Associated X Protein/pharmacology*


Result Analysis
Print
Save
E-mail