1.Vulvar intraepithelial neoplasia.
Ying DONG ; Xiao-ming ZHANG ; Feng ZHAO ; Cui-cui WANG ; Hui BI ; Ting LI
Chinese Journal of Pathology 2013;42(8):557-561
2.Evaluation of staging indice and complications of pneumoconiosis pathological diagnosis criteria.
Yi LI ; E-Biao QU ; Hong-Yuan WANG ; Cui-Lan LI ; Jun-Fen YANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2006;24(11):687-687
Aged
;
Humans
;
Lung
;
pathology
;
Male
;
Middle Aged
;
Pneumoconiosis
;
complications
;
diagnosis
;
pathology
;
Reference Standards
3.γH2AX and its application in clinical tumor research.
Ming CUI ; Yang LIU ; Guanxi WANG ; Yang LI ; Yuxin YIN
Chinese Journal of Pathology 2014;43(10):714-717
6.Standardized nursing effect of oral damage in acute paraquat poisoning.
Aiying ZHENG ; Limin NIE ; Yingping TIAN ; Hengbo GAO ; Xiaolei CUI ; Yajuan WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(3):231-231
Female
;
Humans
;
Male
;
Mouth
;
injuries
;
Mouth Diseases
;
chemically induced
;
nursing
;
Paraquat
;
poisoning
;
Patient Care
;
standards
7.Ultrastructural characteristics of SARS associated virus in infected cells.
Cui-e WANG ; Yu-chuan LI ; Xiao-hong WU ; Jun-tian CAO ; Ge YAN ; Jin-feng LI ; Bing-yin SI ; Man YU ; E-de QIN ; Qing-yu ZHU
Chinese Journal of Pathology 2003;32(3):209-211
OBJECTIVEElectron microscopical study of infected cells to identify the pathogenic agent of SARS.
METHODSVero E6 cells infected with lung autopsy samples or nasopharyngeal swabs from SARS patients of Beijing and Guangzhou were inoculated. The supernatant and cultured cells exhibiting identifiable cytopathic effect (CPE) were prepared for electron microscopic study.
RESULTSExamination of CPE cells on thin-section revealed characteristic coronavirus particles within the cisternae of endoplasmic reticulum, Golgi apparatus, vesicles and extracellular space. They were mainly spherical or oval in shape, annular or dense, about 80 nm in diameter. Negative-stain electron microscopy identified coronavirus particles in culture supernatant, 80 - 120 nm in diameter, with club-shaped surface projections. Elongated, rod-, kidney- or other irregular shaped virons with the size of 100 - 200 nm by 60 - 90 nm were also found in the cultured cells infected with the lung samples from the Guangdong patients. Infectious virons entered cells by endocytosis or membrane fusion and released through a budding process.
CONCLUSIONThese data indicate a novel coronavirus as the causative agent of SARS. Most viral particles showed typical characteristics of coronavirus. The potential role of special shape viruses is expected to be further investigated.
Animals ; Cercopithecus aethiops ; Humans ; Microscopy, Electron ; SARS Virus ; ultrastructure ; Severe Acute Respiratory Syndrome ; virology ; Vero Cells
8.Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro.
Yong-Fu WANG ; E-mail: CAIJX@POST.KIZ.AC.CN. ; Chao-Cui LI ; Jing-Xia CAI
Neuroscience Bulletin 2006;22(5):274-280
Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.
9.RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells.
Min WEI ; Yan-Ling ZHANG ; Lan CHEN ; Cui-Xia CAI ; Han-Duo WANG
Journal of Southern Medical University 2016;37(2):232-237
OBJECTIVETo explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms.
METHODSThree HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting.
RESULTSTransfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (P<0.01). HERC4 silencing by siRNA-3 markedly suppressed the proliferation and migration of Hela cells, increased the apoptosis rate (P<0.01) and reduced the expression levels of cyclin D1 and Bcl-2 (P<0.01).
CONCLUSIONSilencing of HERC4 efficiently inhibits the proliferation, migration, and invasion of Hela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.
Apoptosis ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cyclin D1 ; metabolism ; Down-Regulation ; Female ; HeLa Cells ; Humans ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA Interference ; RNA, Small Interfering ; genetics ; Transfection ; Ubiquitin-Protein Ligases ; genetics ; metabolism ; Uterine Cervical Neoplasms ; pathology
10.Potential involvement of abnormal increased SUMO-1 in modulation of the formation of Alzheimer's disease senile plaques and neuritic dystrophy in APP/PS1 transgenic mice.
Xiao-Yan ZHAO ; Dan-Dan WANG ; Ye SHAN ; Cui-Qing ZHU
Acta Physiologica Sinica 2013;65(3):253-262
Small ubiquitin-related modifiers (SUMOs) belong to an important class of ubiquitin like proteins. SUMOylation is a post-translational modification process that regulates the functional properties of many proteins, among which are several proteins implicated in neurodegenerative diseases. This study was aimed to investigate the changes of SUMO-1 expression and modification, and the relationship between SUMO-1 and Alzheimer's disease (AD) pathology in APP/PS1 transgenic AD mice. Using Western blot, co-immunoprecipitation and immunofluorescent staining methods, the SUMO-1 expression and modification and its relation to tau, amyloid precursor protein (APP) and β-amyloid protein (Aβ) in the 12-month-old APP/PS1 transgenic AD mice were analyzed. The results showed that: (1) Compared with the normal wild-type mice, the expression and modification of SUMO-1 increased in brain of AD mice, which was accompanied by an increase of ubiquitination; (2) In RIPA soluble protein fraction of cerebral cortex, co-immunoprecipitation analysis showed tau SUMOylated by SUMO-1 increased in AD mice, however, AT8 antibody labeled phosphorylated tau was less SUMOylated whereas PS422 antibody labeled phosphorylated tau was similar to control mice; (3) Double immunofluorescent staining showed that SUMO-1 could distributed in amyloid plaques, appearing that some of SUMO-1 diffused in centre of some plaques and some of SUMO-1 co-localized with AT8 labeled phosphorylated tau forming punctate aggregates around amyloid plaques which was concerned as dystrophic neurites, however, less Aβ, APP and PS422 labeled phosphorylated tau were found co-localized with SUMO-1. These results suggest that SUMO-1 expression and modification increase abnormally in transgenic AD mice, which may participate in modulation of the formation of senile plaques and dystrophic neurites.
Alzheimer Disease
;
physiopathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
metabolism
;
Animals
;
Brain
;
pathology
;
Mice
;
Mice, Transgenic
;
Neurites
;
pathology
;
Phosphorylation
;
Plaque, Amyloid
;
physiopathology
;
SUMO-1 Protein
;
metabolism
;
Sumoylation
;
tau Proteins
;
metabolism