1.MIME-Mitosis instead of meiosis and its application in crop apomixis.
Yanhong HOU ; Guizhi GONG ; Zhuchun PENG ; Qianqian DONG ; Ai LUO ; Qibin HONG
Chinese Journal of Biotechnology 2020;36(4):612-621
Apomixis has been widely concerned because of its great potential in heterosis fixation. Artificial apomixis is an important direction of current apomixis research. Mitosis instead of Meiosis (MIME) produces diploid gametes that is identical with the maternal genetic composition and is a key step in the artificial creation of apomixes. This paper reviews the occurrence of MIME and its application in crop apomixis and the problems encountered, in an aim to provide reference for expanding the application of MIME in crop apomixis.
Apomixis
;
Crops, Agricultural
;
genetics
;
Diploidy
;
Germ Cells
;
Meiosis
;
Mitosis
2.Bt transgenic crops for insect-resistance and modification of Bt protein and utilization of stacking strategy.
Chinese Journal of Biotechnology 2015;31(1):53-64
Insecticidal protein genes from Bacillus thuringiensis are currently the most widely used insect-resistant genes. They have been transferred to many crops for breeding and production. Among them, cotton, maize, potato and other insect-resistant crops are commercialized, creating considerable economic benefit. In this review, we summarized advances in identifying functional genes and transgenic crops for insect resistance, compared different strategies for enhancing vigor of insecticidal protein and utilizing gene stacking as well as listing valuable groups of stacked genes. In addition, the methods for multiple gene transformation was discussed.
Animals
;
Bacterial Proteins
;
genetics
;
Crops, Agricultural
;
genetics
;
Endotoxins
;
genetics
;
Hemolysin Proteins
;
genetics
;
Insecta
;
Plants, Genetically Modified
3.Rice Genomics: over the Past Two Decades and into the Future.
Shuhui SONG ; Dongmei TIAN ; Zhang ZHANG ; Songnian HU ; Jun YU
Genomics, Proteomics & Bioinformatics 2018;16(6):397-404
Domestic rice (Oryza sativa L.) is one of the most important cereal crops, feeding a large number of worldwide populations. Along with various high-throughput genome sequencing projects, rice genomics has been making great headway toward direct field applications of basic research advances in understanding the molecular mechanisms of agronomical traits and utilizing diverse germplasm resources. Here, we briefly review its achievements over the past two decades and present the potential for its bright future.
Crops, Agricultural
;
genetics
;
Genome, Plant
;
genetics
;
Genomics
;
High-Throughput Nucleotide Sequencing
;
Oryza
;
genetics
;
growth & development
;
Phenotype
4.Improving the production of plant-based recombinant protein: a review.
Zhaoyun WU ; Qian ZHANG ; Yuge GUO ; Huijuan YANG ; Tiezhao YANG
Chinese Journal of Biotechnology 2022;38(8):2784-2797
Recombinant proteins provide new means for disease treatment, while creating considerable economic benefits. Using commercial crops (mainly tobacco), cereal crops, legumes, and vegetable crops to produce recombinant proteins with medicinal value is a hot-spot for research in "molecular farming". Although many recombinant proteins have been expressed in plants, only a small number have been successfully put into use. To overcome the problems that greatly hamper the development of recombinant protein production in plants, researchers have improved expression systems to increase the yield of recombinant proteins. Starting from analyzing the problems of low yield and/or low biological activity of recombinant proteins produced by plants, the optimization strategies to solve these problems were reviewed, and future research directions for improving the yield of recombinant proteins produced by plants were proposed.
Crops, Agricultural/genetics*
;
Plant Proteins/metabolism*
;
Plants, Genetically Modified/genetics*
;
Recombinant Proteins
;
Tobacco/genetics*
5.Comparison of commercialization of transgenic crops in China and world-wide.
Chinese Journal of Biotechnology 2008;24(4):541-546
Currently, transgenic crops create huge economic, social and ecological benefits with the development of its commercial production. For China, the speed of development and commercialization of transgenic crops is a strategic issue for the sustainable agriculture development and the international competitiveness of our agricultural products. In this paper, we compared and analyzed the status of commercialization of transgenic crops in China and world-wide.
Agriculture
;
methods
;
trends
;
China
;
Crops, Agricultural
;
genetics
;
Gene Transfer Techniques
;
trends
;
Plants, Genetically Modified
;
genetics
6.The story of geneticist Hsien-Wen Li.
Protein & Cell 2010;1(8):709-710
7.Application of CRISPR-Cas9 gene editing technology in crop breeding.
Wenjing YIN ; Zhengai CHEN ; Jiahui HUANG ; Hanfei YE ; Tao LU ; Mei LU ; Yuchun RAO
Chinese Journal of Biotechnology 2023;39(2):399-424
The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields. Firstly, this article introduces the generation, working mechanism and advantages of CRISPR-Cas9 technology; secondly, it reviews the applications of CRISPR-Cas9 technology in gene knockout, gene knock-in, gene regulation and genome in breeding and domestication of important food crops such as rice, wheat, maize, soybean and potato. Finally, the article summarizes the current problems and challenges encountered by CRISPR-Cas9 technology and prospects future development and application of CRISPR-Cas9 technology.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Plant Breeding
;
Crops, Agricultural/genetics*
;
Technology
8.Advances in the mechanism of plant adaptation to acid aluminum stress.
Xiaoxia DENG ; Yueming LI ; Kunshu YAO ; Jingwen QIAO ; Jinghong WANG ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(8):2754-2766
The aluminum stress in acidic soil areas of China is an important abiotic stress factor that hampers the normal growth and development of plants and seriously affects the agricultural yield. The forms of plant resistance to aluminum stress are complex and diverse, which include secretion of organic acids, increase of rhizosphere pH, secretion of mucus, cell wall fixation of Al3+, organic acid chelation of Al3+ in cell solute, and vacuolar area isolation. Most of studies focus on analyzing conventional physiological characteristics, but in-depth molecular biological analyses are lacking. This review summarizes the mechanisms how plants adapt to acidic aluminum stress. This includes the effect of acid aluminum stress on plant growth and physiological metabolism, the two main physiological mechanisms of plant adaptation to acid aluminum stress (aluminum exclusion mechanism, aluminum tolerance mechanism), and the aluminum resistance related genes. Finally, this paper puts forward some prospects for further revealing the mechanism of plant adaptation to acid aluminum stress and excavating high-quality crops suitable for cultivation in acidic soils.
Acids
;
Adaptation, Physiological
;
Aluminum
;
Crops, Agricultural/genetics*
;
Gene Expression Regulation, Plant
;
Plant Roots
;
Soil/chemistry*
9.Advances in genetic engineering of plant virus resistance.
Yakupjan HAXIM ; Asigul ISMAYIL ; Yunjing WANG ; Yule LIU
Chinese Journal of Biotechnology 2015;31(6):976-994
Plant virus is one of the most economical devastating microorganisms for global agriculture. Although several strategies are useful for controlling viral infection, such as resistant breeds cultivation, chemical bactericides treatment, blocking the infection source, tissue detoxification and field sanitation, viral disease is still a problem in agricultural production. Genetic engineering approach offers various options for introducing virus resistance into crop plants. This paper reviews the current strategies of developing virus resistant transgenic plants.
Agriculture
;
Crops, Agricultural
;
genetics
;
virology
;
Genetic Engineering
;
Plant Diseases
;
prevention & control
;
virology
;
Plant Viruses
;
Plants, Genetically Modified
;
virology
10.Review of transgenic crop breeding in China.
Chinese Journal of Biotechnology 2015;31(6):892-900
The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made.
China
;
Crops, Agricultural
;
genetics
;
History, 20th Century
;
History, 21st Century
;
Oryza
;
Plant Breeding
;
history
;
Plants, Genetically Modified
;
Zea mays