1.Identification of Trichosporon spp. strains by sequencing D1/D2 region and sub-typing by sequencing ribosomal intergenic spacer region of ribosomal DNA.
Jingsi, ZENG ; Cristina Maria, DE SOUZA MOTTA ; Kazutaka, FUKUSHIMA ; Kayoko, TAKIZAWA ; Oliane, MARIA CORREIA MAGALHES ; Rejane Pereira, NEVES ; Kazuko, NISHIMURA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2009;29(5):655-8
To re-identify and further group 25 isolates of Trichosporon spp. identified morphologically previously, sequences of D1/D2 region of large subunit (LSU) of ribosomal DNA (rDNA) of 25 tested strains for identification and those of ribosomal intergenic space 1 (IGS1) region of 11 strains for subgrouping were detected. The identifications of tested strains were changed except 6 strains. According to the alignment of the IGS1 region, 6 T. asahii isolates tested fell into 4 groups and 5 T. faecale isolates into 3 groups. Polymorphism of 2 T. japonicum isolates was found in 10 positions. With the alignments obtained in this research compared with the relative GenBank entries, it was found that T. asahii, T. faecale and T. japonicum species were divided into 7, 3 and 2 subtypes respectively. Morphological and biophysical methods are not sufficient for Trichosporon spp. identification. Sequencing becomes necessary for Trichosporon diagnosis. There is obvious diversity within a species.
2.Identification of Trichosporon spp. Strains by Sequencing D1/D2 Region and Sub-typing by Sequencing Ribosomal Intergenic Spacer Region of Ribosomal DNA
ZENG JINGSI ; Cristina Maria de Souza Motta ; Fukushima KAZUTAKA ; Takizawa KAYOKO ; Oliane Maria Correia Magalhes ; Neves Pereira REJANE ; Nishimura KAZUKO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2009;29(5):655-658
To re-identify and further group 25 isolates of Trichosporon spp. identified morphologically previously, sequences of D1/D2 region of large subunit (LSU) of ribosomal DNA (rDNA) of 25 tested strains for identification and those of ribosomal intergenic space 1 (IGS1) region of 11 strains for sub-grouping were detected. The identifications of tested strains were changed except 6 strains. According to the alignment of the IGS1 region, 6 T. asahii isolates tested fell into 4 groups and 5 T. faecale isolates into 3 groups. Polymorphism of 2 T.japonicum isolates was found in 10 positions. With the alignments obtained in this research compared with the relative GenBank entries, it was found that T. asahii, T.faecale and T.japonicum species were divided into 7, 3 and 2 subtypes respectively. Morphological and biophysical methods are not sufficient for Trichosporon spp. identification. Sequencing becomes neces-sary for Trichosporon diagnosis. There is obvious diversity within a species.
3.LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells.
Zhen SUN ; Hua YU ; Jing ZHAO ; Tianyu TAN ; Hongru PAN ; Yuqing ZHU ; Lang CHEN ; Cheng ZHANG ; Li ZHANG ; Anhua LEI ; Yuyan XU ; Xianju BI ; Xin HUANG ; Bo GAO ; Longfei WANG ; Cristina CORREIA ; Ming CHEN ; Qiming SUN ; Yu FENG ; Li SHEN ; Hao WU ; Jianlong WANG ; Xiaohua SHEN ; George Q DALEY ; Hu LI ; Jin ZHANG
Protein & Cell 2022;13(7):490-512
LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.
Animals
;
Cell Differentiation
;
Embryo, Mammalian/metabolism*
;
Embryonic Development
;
Mice
;
Pluripotent Stem Cells/metabolism*
;
RNA, Messenger/genetics*
;
RNA, Ribosomal
;
RNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Zygote/metabolism*