1.Plagiorchis muris infection in Apodemus agrarius from northern Gyeonggi-do (Province) near the demilitarized zone.
Jong Yil CHAI ; Jae Hwan PARK ; Sang Mee GUK ; Jae Lip KIM ; Hyo Jin KIM ; Won Hee KIM ; Eun Hee SHIN ; Terry A KLEIN ; Heung Chul KIM ; Sung Tae CHONG ; Jin Won SONG ; Luck Ju BAEK
The Korean Journal of Parasitology 2007;45(2):153-156
The small intestines of 6 species of rodents and 1 species of insectivore were examined seasonally for Plagiorchis muris infection in 3 different localities in northern Gyeonggi-do (Province), near the demilitarized zone (DMZ). A total of 1,496 animals, including 1,366 Apodemus agrarius, 54 Crocidura lasiura (insectivore), 32 Mus musculus, 28 Micronytus fortis, 9 Eothenomys regulus, 6 Micronys minutus, and 3 Cricetulus triton, were live-trapped at Yeoncheon-gun (n = 351), Paju-shi (804) and Pocheon-gun (343) at 3-mo intervals from December 2004 to September 2005. A total of 1,647 P. muris were collected from 72 (5.3%) A. agrarius. The infection rate was the highest in Pocheon-gun (8.2%), followed by Yeoncheon-gun (5.0%) and Paju-shi (4.2%). A higher infection rate was observed in A. agrarius captured during September (19.4%) than those captured during December (3.0%), June (2.6%), or April (0%). However, the worm burden was the highest in June (av. 32.1/animal), followed by September (24.7), December (4.0), and April (0). None of the other animal species were found infected with P. muris. The results reveal that A. agrarius is a natural definitive host for P. muris, and infection rates and worm burdens vary seasonally and geographically.
Animals
;
Arvicolinae/parasitology
;
Cricetinae
;
Cricetulus/parasitology
;
Insectivora/parasitology
;
Intestine, Small/parasitology
;
Korea/epidemiology
;
Mice/parasitology
;
Murinae/*parasitology
;
Prevalence
;
Rodent Diseases/epidemiology/*parasitology
;
Rodentia
;
Seasons
;
Trematoda/*isolation & purification
;
Trematode Infections/epidemiology/parasitology/*veterinary
2.Apodemus agrarius as a new definitive host for Neodiplostomum seoulense.
Jong Yil CHAI ; Jae Hwan PARK ; Sang Mee GUK ; Jae Lip KIM ; Hyo Jin KIM ; Won Hee KIM ; Eun Hee SHIN ; Terry A KLEIN ; Heung Chul KIM ; Sung Tae CHONG ; Jin Won SONG ; Luck Ju BAEK
The Korean Journal of Parasitology 2007;45(2):157-161
A total of 1,496 rodents and insectivores were live-trapped at Yeoncheon-gun (n = 351), Paju-shi (804), and Pocheon-gun (343), Gyeonggi-do (Province), and examined for intestinal helminths, including Neodiplostomum seoulense, seasonally from December 2004 to September 2005. Six species of rodents, including Apodemus agrarius (1,366), Mus musculus (32), Micronytus fortis (28), Eothenomys regulus (9), Micronys minutus (6), and Cricetulus triton (3), and 1 species of insectivores Crocidura lasiura (54) were collected. A total of 321 adult N. seoulense were collected from 19 (1.4%) A. agrarius. The worm burden ranged from 1 to 101 per A. agrarius (mean; 16.9). No N. seoulense was observed in other rodent or insectivore species examined. The infection rate during autumn (4.5%) was higher than those during spring (0.8%), summer (0.8%), and winter (0.5%). The average number of N. seoulense in infected A. agrarius was the highest in spring (66.0 specimens), followed by autumn (15.2), winter (4.5), and summer (3.3). This study first confirms that A. agrarius is a natural definitive host for N. seoulense, and demonstrates that the infection rates and intensities vary seasonally and geographically.
Animals
;
Arvicolinae/parasitology
;
Cricetinae
;
Cricetulus/parasitology
;
Feces/parasitology
;
Geography
;
Insectivora/parasitology
;
Intestine, Small/parasitology
;
Korea/epidemiology
;
Mice
;
Murinae/*parasitology
;
Rodent Diseases/*epidemiology
;
Seasons
;
Trematoda/*isolation & purification
;
Trematode Infections/epidemiology/*veterinary
3.Effects of Mannose on Pathogenesis of Acanthamoeba castellanii.
The Korean Journal of Parasitology 2012;50(4):365-369
Acanthamoeba spp. are single-celled protozoan organisms that are widely distributed in the environment. In this study, to understand functional roles of a mannose-binding protein (MBP), Acanthamoeba castellanii was treated with methyl-alpha-D-mannopyranoside (mannose), and adhesion and cytotoxicity of the amoeba were analyzed. In addition, to understand the association of MBP for amoeba phagocytosis, phagocytosis assay was analyzed using non-pathogenic bacterium, Escherichia coli K12. Amoebae treated with mannose for 20 cycles exhibited larger vacuoles occupying the most area of the amoebic cytoplasm in comparison with the control group amoebae and glucose-treated amoebae. Mannose-selected amoebae exhibited lower levels of binding to Chinese hamster ovary (CHO) cells. Exogenous mannose inhibited >50% inhibition of amoebae (control group) binding to CHO cells. Moreover, exogenous mannose inhibited amoebae (i.e., man-treated) binding to CHO cells by <15%. Mannose-selected amoebae exhibited significantly decreased cytotoxicity to CHO cells compared with the control group amoebae, 25.1% vs 92.1%. In phagocytic assay, mannose-selected amoebae exhibited significant decreases in bacterial uptake in comparison with the control group, 0.019% vs 0.03% (P<0.05). Taken together, it is suggested that mannose-selected A. castellanii trophozoites should be severely damaged and do not well interact with a target cell via a lectin of MBP.
Acanthamoeba castellanii/drug effects/metabolism/*pathogenicity
;
Amebiasis/*parasitology
;
Animals
;
CHO Cells
;
Cell Adhesion/drug effects
;
Cell Survival
;
Cricetinae
;
Cricetulus
;
Escherichia coli K12/metabolism
;
Female
;
Mannose/*pharmacology
;
Mannose-Binding Lectin/*metabolism
;
Phagocytosis
;
Protozoan Proteins/metabolism