1.Amino acid exporters and metabolic modification of Corynebacterium glutamicum - a review.
Xiaomei ZHANG ; Yujie GAO ; Ling YANG ; Yi YANG ; Ping ZHENG ; Jibin SUN ; Jinsong SHI ; Zhenghong XU
Chinese Journal of Biotechnology 2020;36(11):2250-2259
Amino acids are important compounds with a wide range of applications in the food, medicine and chemical industries. Corynebacterium glutamicum is a powerful workhorse commonly used in industrial amino acid production, with the scale of more than one million tons. In addition to its efficient anabolism, the effective exporters also ensure the high amino acid production by C. glutamicum. In this review, the research progress of amino acid exporter of C. glutamicum is summarized, to provide the foundation for further improving amino acid production by C. glutamicum via metabolic engineering.
Amino Acids
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
2.Recent advances in developing enabling technologies for Corynebacterium glutamicum metabolic engineering.
Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2021;37(5):1603-1618
Corynebacterium glutamicum is an important workhorse of industrial biotechnology, especially for amino acid bioindustry. This bacterium is being used to produce various amino acids at a level of over 6 million tons per year. In recent years, enabling technologies for C. glutamicum metabolic engineering have been developed and improved, which accelerated construction and optimization of microbial cell factoriers, expanding spectra of substrates and products, and facilitated basic researches on C. glutamicum. With these technologies, C. glutamicum has become one of the ideal microbial chasses. This review summarizes recent key technological developments of enabling technologies for C. glutamicum metabolic engineering and focuses on establishment and applications of CRISPR-based genome editing, gene expression regulation, adaptive laboratory evolution, and biosensor technologies.
Amino Acids
;
Biotechnology
;
Corynebacterium glutamicum/genetics*
;
Gene Editing
;
Metabolic Engineering
3.Advances and prospects in metabolic engineering for the production of amino acids.
Qian MA ; Li XIA ; Miao TAN ; Quanwei SUN ; Mengya YANG ; Ying ZHANG ; Ning CHEN
Chinese Journal of Biotechnology 2021;37(5):1677-1696
Fermentative production of amino acids is one of the pillars of the fermentation industry in China. Recently, with the fast development of metabolic engineering and synthetic biology technologies, the metabolic engineering for production of amino acids has been flourishing. Conventional forward metabolic engineering, reversed metabolic engineering based on omics data and in silico simulation, and evolutionary metabolic engineering mimicking the natural evolution, have shown increasingly promising applications. A series of highly efficient and robust amino acids-producing strains have been developed and applied in the industrial production of amino acids. The increasingly fierce market competition has put forward new requirements for strain breeding and selection, such as developing high value-added amino acids, dynamic regulation of cellular metabolism, and adapting to the requirements of new process. This review summarizes the advances and prospects in metabolic engineering for the production of amino acids.
Amino Acids
;
China
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
;
Synthetic Biology
4.Secretory production of xylanase in Corynebacterium glutamicum using its endogenous elements.
Wei ZHANG ; Xiuxia LIU ; Yankun YANG ; Zhonghu BAI
Chinese Journal of Biotechnology 2019;35(3):425-434
We constructed bicistronic expression system containing AH6 promoter, 5' UTR and its fore 38 bp sequence from Corynebacterium glutamicum, followed by a conserved Shine-Dalgarno (SD) sequence for xylanase expression. The two major secretory pathways signal peptide in C. glutamicum, Tat (CgR0949) and Sec (CspB) dependent signal peptide were added before xylanase for its secretion. Fed-batch cultivation was done in a 5 L jar for high-level xylanase secretion. The enzyme properties of the purified xylanase were then studied, including the effect of temperature and pH on its activity. The xylanase could be secreted into the culture supernatant when the Sec-dependent signal peptide CspB was used, but none was detected when CgR0949 was used. The secretory production level of xylanase in a flask was 486.2 U/mL and become 1 648.7 U/mL when in a 5 L jar, which was 3.4 fold as in the flask. The optimal pH and temperature of xylanase were pH 4.5 and 45 ℃, respectively. Its activity was 80% of initial activity after pretreatment at 4 ℃ for 24 h at pH 4-11, 95% after incubation below 50 ℃ for 15 min, and 20% when the temperature above 60 ℃. The xylanase could be efficiently secreted into the culture medium by C. glutamicum using its own genetic elements, and the secretion level could be improved through large-scale fed-batch cultivation. This bicistronic expression system can provide a useful tool for heterologous proteins secretion in C. glutamicum. In addition, the catalyze activity of xylanase could be further improved by enzyme properties study.
Corynebacterium glutamicum
;
Promoter Regions, Genetic
;
Protein Sorting Signals
;
Protein Transport
5.Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate.
Jiafeng LIU ; Zhina QIAO ; Youxi ZHAO ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3273-3289
L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.
Glutamic Acid
;
Corynebacterium glutamicum/genetics*
;
Ketoglutaric Acids
;
Metabolic Engineering
;
Alanine
6.Treatment of livestock carcasses in soil using Corynebacterium glutamicum and lysosomal application to livestock burial.
Eun Seon HONG ; Seung Hyuck BANG ; Yang Hoon KIM ; Jiho MIN
Environmental Health and Toxicology 2018;33(2):e2018009-
A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.
Burial*
;
Corynebacterium glutamicum*
;
Corynebacterium*
;
Egg White
;
Livestock*
;
Lysosomes
;
Methods
;
Soil*
;
Waste Disposal Facilities
7.Treatment of livestock carcasses in soil using Corynebacterium glutamicum and lysosomal application to livestock burial
Eun Seon HONG ; Seung Hyuck BANG ; Yang Hoon KIM ; Jiho MIN
Environmental Health and Toxicology 2018;33(2):2018009-
A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.
Burial
;
Corynebacterium glutamicum
;
Corynebacterium
;
Egg White
;
Livestock
;
Lysosomes
;
Methods
;
Soil
;
Waste Disposal Facilities
8.Progress in biosythesis of diaminopentane.
Dongxia LI ; Ming LI ; Hongxin WANG ; Shuya WANG ; Fuping LU
Chinese Journal of Biotechnology 2014;30(2):161-174
Air pollution and global warming are increasingly deteriorating. Large amounts of polyamides derived from fossil fuel sources are consumed around the world. Cadaverine is an important building monomer block of bio-based polyamides, thus biotechnological processes for these polymers possess enormous ecological and economical potential. Currently, the engineered strains for biological production of cadaverine are Corynebacterium glutamicum and Escherichia coli. We review here the latest research progress of biosynthesis of cadaverine including metabolism of cadaverine in microorganisms, key enzymes and transport proteins in cadaverine synthesis pathway, optimum pathways and cadaverine yields.
Biosynthetic Pathways
;
Biotechnology
;
Cadaverine
;
biosynthesis
;
Corynebacterium glutamicum
;
metabolism
;
Escherichia coli
;
metabolism
9.Effect of key notes of TCA cycle on L-glutamate production.
Zhina QIAO ; Meijuan XU ; Mengfei LONG ; Taowei YANG ; Xian ZHANG ; Nakanishi HIDEKI ; Zhiming RAO
Chinese Journal of Biotechnology 2020;36(10):2113-2125
Glutamic acid is an important amino acid with wide range of applications and huge market demand. Therefore, by performing transcriptome sequencing and re-sequencing analysis on Corynebacterium glutamicum E01 and high glutamate-producing strain C. glutamicum G01, we identified and selected genes with significant differences in transcription and gene levels in the central metabolic pathway that may have greatly influenced glutamate synthesis and further increased glutamic acid yield. The oxaloacetate node and α-ketoglutarate node play an important role in glutamate synthesis. The oxaloacetate node and α-ketoglutarate node were studied to explore effect on glutamate production. Based on the integrated strain constructed from the above experimental results, the growth rate in a 5-L fermenter was slightly lower than that of the original strain, but the glutamic acid yield after 48 h reached (136.1±5.53) g/L, higher than the original strain (93.53±4.52) g/L, an increase by 45.5%; sugar-acid conversion rate reached 58.9%, an increase of 13.7% compared to 45.2% of the original strain. The application of the above experimental strategy improved the glutamic acid yield and the sugar-acid conversion rate, and provided a theoretical basis for the metabolic engineering of Corynebacterium glutamicum.
Citric Acid Cycle
;
Corynebacterium glutamicum/metabolism*
;
Glutamic Acid/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
10.Advances in stress tolerance mechanisms and synthetic biology for the industrial robustness of Corynebacterium glutamicum.
Meijuan XU ; Chunyu SHANGGUAN ; Xin CHEN ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(3):831-845
As a model industrial host and microorganism with the generally regarded as safe (GRAS) status, Corynebacterium glutamicum not only produces amino acids on a large scale in the fermentation industry, but also has the potential to produce various new products. C. glutamicum usually encounters various stresses in the process of producing compounds, which severely affect cell viability and production performance. The development of synthetic biology provides new technical means for improving the robustness of C. glutamicum. In this review, we discuss the tolerance mechanisms of C. glutamicum to various stresses in the fermentation process. At the same time, we highlight new synthetic biology strategies for boosting C. glutamicum robustness, including discovering new stress-resistant elements, modifying transcription factors, and using adaptive evolution strategies to mine stress-resistant functional modules. Finally, prospects of improving the robustness of engineered C. glutamicum strains ware provided, with an emphasis on biosensor, screening and design of transcription factors, and utilizing the multiple regulatory elements.
Amino Acids/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Synthetic Biology