1.Progress in biosythesis of diaminopentane.
Dongxia LI ; Ming LI ; Hongxin WANG ; Shuya WANG ; Fuping LU
Chinese Journal of Biotechnology 2014;30(2):161-174
Air pollution and global warming are increasingly deteriorating. Large amounts of polyamides derived from fossil fuel sources are consumed around the world. Cadaverine is an important building monomer block of bio-based polyamides, thus biotechnological processes for these polymers possess enormous ecological and economical potential. Currently, the engineered strains for biological production of cadaverine are Corynebacterium glutamicum and Escherichia coli. We review here the latest research progress of biosynthesis of cadaverine including metabolism of cadaverine in microorganisms, key enzymes and transport proteins in cadaverine synthesis pathway, optimum pathways and cadaverine yields.
Biosynthetic Pathways
;
Biotechnology
;
Cadaverine
;
biosynthesis
;
Corynebacterium glutamicum
;
metabolism
;
Escherichia coli
;
metabolism
2.Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
Lijun WANG ; Sihan YAN ; Taowei YANG ; Meijuan XU ; Xian ZHANG ; Minglong SHAO ; Huazhong LI ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(12):4314-4328
5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.
Aminolevulinic Acid/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Rhodobacter capsulatus/enzymology*
;
Rhodopseudomonas/enzymology*
3.Effect of key notes of TCA cycle on L-glutamate production.
Zhina QIAO ; Meijuan XU ; Mengfei LONG ; Taowei YANG ; Xian ZHANG ; Nakanishi HIDEKI ; Zhiming RAO
Chinese Journal of Biotechnology 2020;36(10):2113-2125
Glutamic acid is an important amino acid with wide range of applications and huge market demand. Therefore, by performing transcriptome sequencing and re-sequencing analysis on Corynebacterium glutamicum E01 and high glutamate-producing strain C. glutamicum G01, we identified and selected genes with significant differences in transcription and gene levels in the central metabolic pathway that may have greatly influenced glutamate synthesis and further increased glutamic acid yield. The oxaloacetate node and α-ketoglutarate node play an important role in glutamate synthesis. The oxaloacetate node and α-ketoglutarate node were studied to explore effect on glutamate production. Based on the integrated strain constructed from the above experimental results, the growth rate in a 5-L fermenter was slightly lower than that of the original strain, but the glutamic acid yield after 48 h reached (136.1±5.53) g/L, higher than the original strain (93.53±4.52) g/L, an increase by 45.5%; sugar-acid conversion rate reached 58.9%, an increase of 13.7% compared to 45.2% of the original strain. The application of the above experimental strategy improved the glutamic acid yield and the sugar-acid conversion rate, and provided a theoretical basis for the metabolic engineering of Corynebacterium glutamicum.
Citric Acid Cycle
;
Corynebacterium glutamicum/metabolism*
;
Glutamic Acid/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
4.Advances in stress tolerance mechanisms and synthetic biology for the industrial robustness of Corynebacterium glutamicum.
Meijuan XU ; Chunyu SHANGGUAN ; Xin CHEN ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(3):831-845
As a model industrial host and microorganism with the generally regarded as safe (GRAS) status, Corynebacterium glutamicum not only produces amino acids on a large scale in the fermentation industry, but also has the potential to produce various new products. C. glutamicum usually encounters various stresses in the process of producing compounds, which severely affect cell viability and production performance. The development of synthetic biology provides new technical means for improving the robustness of C. glutamicum. In this review, we discuss the tolerance mechanisms of C. glutamicum to various stresses in the fermentation process. At the same time, we highlight new synthetic biology strategies for boosting C. glutamicum robustness, including discovering new stress-resistant elements, modifying transcription factors, and using adaptive evolution strategies to mine stress-resistant functional modules. Finally, prospects of improving the robustness of engineered C. glutamicum strains ware provided, with an emphasis on biosensor, screening and design of transcription factors, and utilizing the multiple regulatory elements.
Amino Acids/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Synthetic Biology
5.Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum.
Hui LU ; Qi ZHANG ; Sili YU ; Yu WANG ; Ming KANG ; Shuangyan HAN ; Ye LIU ; Meng WANG
Chinese Journal of Biotechnology 2022;38(2):780-795
As a new CRISPR/Cas-derived genome engineering technology, base editing combines the target specificity of CRISPR/Cas and the catalytic activity of nucleobase deaminase to install point mutations at target loci without generating DSBs, requiring exogenous template, or depending on homologous recombination. Recently, researchers have developed a variety of base editing tools in the important industrial strain Corynebacterium glutamicum, and achieved simultaneous editing of two and three genes. However, the multiplex base editing based on CRISPR/Cas9 is still limited by the complexity of multiple sgRNAs, interference of repeated sequence and difficulty of target loci replacement. In this study, multiplex base editing in C. glutamicum was optimized by the following strategies. Firstly, the multiple sgRNA expression cassettes based on individual promoters/terminators was optimized. The target loci can be introduced and replaced rapidly by using a template plasmid and Golden Gate method, which also avoids the interference of repeated sequence. Although the multiple sgRNAs structure is still complicated, the editing efficiency of this strategy is the highest. Then, the multiple gRNA expression cassettes based on Type Ⅱ CRISPR crRNA arrays and tRNA processing were developed. The two strategies only require one single promoter and terminator, and greatly simplify the structure of the expression cassette. Although the editing efficiency has decreased, both methods are still applicable. Taken together, this study provides a powerful addition to the genome editing toolbox of C. glutamicum and facilitates genetic modification of this strain.
CRISPR-Cas Systems/genetics*
;
Corynebacterium glutamicum/metabolism*
;
Gene Editing
;
Plasmids
;
RNA, Guide/metabolism*
6.Biomanufacturing driven by engineered microbes.
Chinese Journal of Biotechnology 2022;38(4):1267-1294
This article summarized the reviews and research articles published in Chinese Journal of Biotechnology in the field of biomanufacturing in 2021. The article covered major chassis cells such as Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, filamentous fungi, non-model bacteria and non-conventional yeasts. Moreover, this article summarized the advances in the production of amino acids, organic acids, vitamins, higher alcohols, natural compounds (terpenoids, flavonoids, alkaloids), antibiotics, enzymes and enzyme-catalyzed products, biopolymers, as well as the utilization of biomass and one-carbon materials. The key technologies used in the construction of cell factories, such as regulation, evolution, and high-throughput screening, were also included. This article may help the readers better understand the R & D trend in biomanufacturing driven by engineered microbes.
Biomass
;
Biotechnology
;
Corynebacterium glutamicum/metabolism*
;
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Saccharomyces cerevisiae/genetics*
7.Construction and application of a synthetic promoter library for Corynebacterium glutamicum.
Moshi LIU ; Jiao LIU ; Guannan SUN ; Fuping LU ; Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2022;38(2):831-842
Promoter is an important genetic tool for fine-tuning of gene expression and has been widely used for metabolic engineering. Corynebacterium glutamicum is an important chassis for industrial biotechnology. However, promoter libraries that are applicable to C. glutamicum have been rarely reported, except for a few developed based on synthetic sequences containing random mutations. In this study, we constructed a promoter library based on the native promoter of odhA gene by mutating the -10 region and the bystanders. Using a red fluorescent protein (RFP) as the reporter, 57 promoter mutants were screened by fluorescence imaging technology in a high-throughput manner. These mutants spanned a strength range between 2.4-fold and 19.6-fold improvements of the wild-type promoter. The strongest mutant exhibited a 2.3-fold higher strength than the widely used strong inducible promoter Ptrc. Sequencing of all 57 mutants revealed that 55 mutants share a 1-4 bases shift (4 bases shift for 68% mutants) of the conserved -10 motif "TANNNT" to the 3' end of the promoter, compared to the wild-type promoter. Conserved T or G bases at different positions were observed for strong, moderate, and weak promoter mutants. Finally, five promoter mutants with different strength were employed to fine-tune the expression of γ-glutamyl kinase (ProB) for L-proline biosynthesis. Increased promoter strength led to enhanced L-proline production and the highest L-proline titer of 6.4 g/L was obtained when a promoter mutant with a 9.8-fold higher strength compared to the wild-type promoter was used for ProB expression. The use of stronger promoter variants did not further improve L-proline production. In conclusion, a promoter library was constructed based on a native C. glutamicum promoter PodhA. The new promoter library should be useful for systems metabolic engineering of C. glutamicum. The strategy of mutating native promoter may also guide the construction of promoter libraries for other microorganisms.
Corynebacterium glutamicum/metabolism*
;
Gene Library
;
Metabolic Engineering
;
Promoter Regions, Genetic/genetics*
8.Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose.
Bing-Qi YU ; Wei SHEN ; Zheng-Xiang WANG ; Jian ZHUGE
Chinese Journal of Biotechnology 2005;21(2):270-274
The glyoxylate cycle was hypothesed to be indispensable for glutamate overproduction in coryneform bacteria, for it was thought to fulfill anaplerotic functions and to supply energy during the growth phase. During glutamate overproduction phase, however, it has been noted that the high level of the cycle is detrimental to the glutamate production. In order to clarify the relationship between the glutamate production and the glyoxylate cycle, a chromosomal aceA-disrupted mutant of wild-type C. glutamicum ATCC 13032 was constructed. The isocitrate lyase (ICL) activity of the parental strain was 0.011 u/mg of protein and reached 1.980 u/mg of protein after acetate induction; the mutant strain WTdeltaA, however, had no detectable ICL activity and was no longer able to grow on minimal medium with acetate as the sole carbon source. Compared with the wild-type C. glutamicum WT, the mutant strain WTdeltaA, exhibited the same growth rate with glucose as the sole carbon source, indicating glyoxylate cycle is not required for its growth on glucose. On the contrary, the glutamate production in WTdeltaA was severely impaired and more residual glucose was found in the fermentation broth at the end of fermentation with the mutant strain than with the wild-type strain. Further investigations into the relationship between the glutamate production and the glyoxylate cycle are under the way, which may help to elucidate the mechanism of glutamate overproduction.
Corynebacterium glutamicum
;
genetics
;
growth & development
;
metabolism
;
Culture Media
;
Fermentation
;
Glucose
;
metabolism
;
Glutamic Acid
;
biosynthesis
;
Glyoxylates
;
metabolism
;
Isocitrate Lyase
;
metabolism
9.Purification and characterization of glutamate dehydrogenase. from Corynebacterium glutamicum S9114.
Yan WANG ; Xiang SONG ; Ping-Ping YANG ; Zuo-Ying DUAN ; Zhong-Gui MAO
Chinese Journal of Biotechnology 2003;19(6):725-729
Glutamate dehydrogenase (GDH) is a key enzyme in the biosynthesis of glutamate. The GDHs from Corynebacterium glutamicum S9114 the most commonly used strain in glutamate fermentation, were purified and their molecular structures and properties characterized. The coenzymes were also studied in the hope to increase glutamate production. Cells were harvested at mid-exponential phase by centrifugation and washed with Tris-HCl buffer containing DTT and EDTA (pH 7.5). The cells were then disrupted using a French pressure cell press and the supernatant was collected by centrifugation. The extract was concentrated by 70-fold using the AKTA-100 FPLC system employing a DEAE-cellulose ion exchange column, a hydrophobic interaction chromatography (HIC) and Sephadex G-200 gel filtration. The purified extracts contained NADPH-dependent GDH and NADH-dependent GDH. Both of the enzymes were highly specific for the coenzymes. The molecular masses of the NADPH-dependent GDH and its subunit were 188kD and 32kD respectively, suggesting the enzyme is a homo-hexamer. Our data reported for the first time the presence of NADH- dependent GDH in Corynebacterium glutamicum S9114, similar to other microorganisms containing both GDHs. The NADPH-dependent and NADH-dependent GDH in Corynebacterium glutamicum S9114 may participate in the assimilation and dissimilation of ammonia respectively. The absorptions of NADPH-dependent GDH was very weak at 280nm but very high at 215nm, suggesting a low phenylalanine and tyrosine content in the enzyme.
Chromatography, Gel
;
Chromatography, Ion Exchange
;
Corynebacterium glutamicum
;
enzymology
;
Glutamate Dehydrogenase
;
isolation & purification
;
metabolism
;
Molecular Weight
;
NADP
;
metabolism
;
Substrate Specificity
10.Phage resistance of Corynebacterium crenatum conferred by the restriction and modification system cglI.
Yongfei HU ; Tiemin LI ; Zhiyong YANG ; Bo ZHANG ; Yu LI
Chinese Journal of Biotechnology 2008;24(5):760-765
In order to prevent phage contamination in amino acid fermentation, we introduced the restriction and modification system cglI gene complex into Corynebacterium crenatum and studied their phage-resistance. The cglI gene complex was amplified from Corynebacterium glutamicum by PCR and constructed into pJL23 vector. The recombinant strains were obtained by transformation of the recombinant plasmid pJL23-cglI into C. crenatum. Results showed that the recombinant strains possessed strong phage-resistance activity and broad phage-resistance spectrum, demonstrating the feasibility of using cglI gene complex for construction of phage-resistance recombinant C. crenatum strains and presenting a powerful way to solve the problem of phage contamination in amino acid fermentation industry.
Amino Acids
;
biosynthesis
;
Bacterial Proteins
;
genetics
;
Bacteriophages
;
growth & development
;
Corynebacterium
;
genetics
;
virology
;
Corynebacterium glutamicum
;
genetics
;
metabolism
;
DNA Restriction-Modification Enzymes
;
genetics
;
Fermentation
;
Galectins
;
genetics
;
Recombination, Genetic
;
Transformation, Bacterial