1.Amino acid exporters and metabolic modification of Corynebacterium glutamicum - a review.
Xiaomei ZHANG ; Yujie GAO ; Ling YANG ; Yi YANG ; Ping ZHENG ; Jibin SUN ; Jinsong SHI ; Zhenghong XU
Chinese Journal of Biotechnology 2020;36(11):2250-2259
Amino acids are important compounds with a wide range of applications in the food, medicine and chemical industries. Corynebacterium glutamicum is a powerful workhorse commonly used in industrial amino acid production, with the scale of more than one million tons. In addition to its efficient anabolism, the effective exporters also ensure the high amino acid production by C. glutamicum. In this review, the research progress of amino acid exporter of C. glutamicum is summarized, to provide the foundation for further improving amino acid production by C. glutamicum via metabolic engineering.
Amino Acids
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
2.Identification and analysis of 2 Corynebacterium diphtheria strains in Guangdong Province.
Zhen Cui LI ; Mei Zhen LIU ; Yan Mei FANG ; Zi Jun GONG ; Xu Lin WANG ; Jing Diao CHEN ; Bo Sheng LI
Chinese Journal of Preventive Medicine 2022;56(4):427-432
Objective: To identify and analyze two strains of C. diphtheriae in Guangdong Province by combining whole genome sequencing with traditional detection methods. Methods: The C. diphtheriae was isolated from Guangzhou in 2010 and Zhuhai in 2020 respectively. Isolates were identified by API Coryne strips and MALDI-TOF-MS. Genomic DNA was sequenced by using Illumina. The assembly was performed for each strain using CLC software. J Species WS online tool was used for average nucleoside homology identification, then narKGHIJ and tox gene were detected by NCBI online analysis tool BLSATN. MEGA-X was used to build a wgSNP phylogenetic tree. Results: GD-Guangzhou-2010 was Belfanti and GD-Zuhai-2020 was Gravis. ANIb between GD-Guangzhou-2010 and C. belfantii was 99.61%. ANI between GD-Zhuhai-2020 and C. diphtheriae was 97.64%. BLASTN results showed that the nitrate reduction gene narKGHIJ and tox gene of GD-Guangzhou-2010 was negative, while GD-Zhuhai-2020 nitrate reduction gene narKGHIJ was positive. There were two obvious clades in wgSNP phylogenetic tree. The first clades included all Mitis and Gravis types strains as well as GD-Zhuhai-2020. The second clades contained all isolates of C.belfantii, C.diphtheriae subsp. lausannense and GD-guangzhou-2010. Conclusion: Two non-toxic C. diphtheriae strains are successfully isolated and identified. The phylogenetic tree suggests that GD-Guangzhou-2010 and GD-Zhuhai-2020 are located in two different evolutionary branches.
China/epidemiology*
;
Corynebacterium
;
Corynebacterium diphtheriae/genetics*
;
Diphtheria/microbiology*
;
Humans
;
Nitrates
;
Phylogeny
3.Analysis on identification and traceability of one non-toxigenic Corynebacterium diphtheriae from a patient with diabetic foot in Hainan province.
Xiao Jun ZHOU ; Cun Ren CHEN ; Xu Ming WANG ; Hua WU ; Tao HUANG ; Shao Ling WANG ; Lina NIU
Chinese Journal of Preventive Medicine 2022;56(8):1107-1111
There is a rare case of an elderly diabetic with diabetic foot infection at Hainan General Hospital in September 2021, which was diagnosed as Corynebacterium diphtheriae infection incidentally on routine culture with conventional methods and molecular biological approaches, to aid in diagnosis in clinical practice. Owing to smear staining, Albert staining and VITEK 2 system, automated identification systems viz matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) confirmed combing with 16S ribosomal RNA (16S rRNA) gene has been used for the taxonomic classification of bacteria. Otherwise, toxin gene tox was done for diphtheria toxin synthesis. The isolate was Gram-stain-positive, rod-like arrangement with irregular thickness, with characteristic metachromatic granules, ferment most sugars and homology of 16S rRNA analyses with C. diphtheriae NCTC11397T (MW682323.1) was greater than a 100% possibility, toxin gene tox was negative. The findings lay the foundation to clinical identify and trace of non-toxigenic C. diphtheriae. Moreover, this work provides insights into the non-toxigenic C.diphtheriae that contribute to recognized risk of non-toxigenic C.diphtheriae infections.
Aged
;
Corynebacterium/genetics*
;
Corynebacterium diphtheriae/genetics*
;
Diabetes Mellitus
;
Diabetic Foot
;
Diphtheria/microbiology*
;
Humans
;
RNA, Ribosomal, 16S/genetics*
4.Recent advances in developing enabling technologies for Corynebacterium glutamicum metabolic engineering.
Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2021;37(5):1603-1618
Corynebacterium glutamicum is an important workhorse of industrial biotechnology, especially for amino acid bioindustry. This bacterium is being used to produce various amino acids at a level of over 6 million tons per year. In recent years, enabling technologies for C. glutamicum metabolic engineering have been developed and improved, which accelerated construction and optimization of microbial cell factoriers, expanding spectra of substrates and products, and facilitated basic researches on C. glutamicum. With these technologies, C. glutamicum has become one of the ideal microbial chasses. This review summarizes recent key technological developments of enabling technologies for C. glutamicum metabolic engineering and focuses on establishment and applications of CRISPR-based genome editing, gene expression regulation, adaptive laboratory evolution, and biosensor technologies.
Amino Acids
;
Biotechnology
;
Corynebacterium glutamicum/genetics*
;
Gene Editing
;
Metabolic Engineering
5.Advances and prospects in metabolic engineering for the production of amino acids.
Qian MA ; Li XIA ; Miao TAN ; Quanwei SUN ; Mengya YANG ; Ying ZHANG ; Ning CHEN
Chinese Journal of Biotechnology 2021;37(5):1677-1696
Fermentative production of amino acids is one of the pillars of the fermentation industry in China. Recently, with the fast development of metabolic engineering and synthetic biology technologies, the metabolic engineering for production of amino acids has been flourishing. Conventional forward metabolic engineering, reversed metabolic engineering based on omics data and in silico simulation, and evolutionary metabolic engineering mimicking the natural evolution, have shown increasingly promising applications. A series of highly efficient and robust amino acids-producing strains have been developed and applied in the industrial production of amino acids. The increasingly fierce market competition has put forward new requirements for strain breeding and selection, such as developing high value-added amino acids, dynamic regulation of cellular metabolism, and adapting to the requirements of new process. This review summarizes the advances and prospects in metabolic engineering for the production of amino acids.
Amino Acids
;
China
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
;
Synthetic Biology
6.Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate.
Jiafeng LIU ; Zhina QIAO ; Youxi ZHAO ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3273-3289
L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.
Glutamic Acid
;
Corynebacterium glutamicum/genetics*
;
Ketoglutaric Acids
;
Metabolic Engineering
;
Alanine
7.Phage resistance of Corynebacterium crenatum conferred by the restriction and modification system cglI.
Yongfei HU ; Tiemin LI ; Zhiyong YANG ; Bo ZHANG ; Yu LI
Chinese Journal of Biotechnology 2008;24(5):760-765
In order to prevent phage contamination in amino acid fermentation, we introduced the restriction and modification system cglI gene complex into Corynebacterium crenatum and studied their phage-resistance. The cglI gene complex was amplified from Corynebacterium glutamicum by PCR and constructed into pJL23 vector. The recombinant strains were obtained by transformation of the recombinant plasmid pJL23-cglI into C. crenatum. Results showed that the recombinant strains possessed strong phage-resistance activity and broad phage-resistance spectrum, demonstrating the feasibility of using cglI gene complex for construction of phage-resistance recombinant C. crenatum strains and presenting a powerful way to solve the problem of phage contamination in amino acid fermentation industry.
Amino Acids
;
biosynthesis
;
Bacterial Proteins
;
genetics
;
Bacteriophages
;
growth & development
;
Corynebacterium
;
genetics
;
virology
;
Corynebacterium glutamicum
;
genetics
;
metabolism
;
DNA Restriction-Modification Enzymes
;
genetics
;
Fermentation
;
Galectins
;
genetics
;
Recombination, Genetic
;
Transformation, Bacterial
8.Current status and future perspectives of metabolic network models of industrial microorganisms.
Chenyang ZHANG ; Yaokang WU ; Xianhao XU ; Xueqin LV ; Jianghua LI ; Guocheng DU ; Long LIU
Chinese Journal of Biotechnology 2021;37(3):860-873
Genome-scale metabolic network model (GSMM) is an extremely important guiding tool in the targeted modification of industrial microbial strains, which helps researchers to quickly obtain industrial microbes with specific traits and has attracted increasing attention. Here we reviewe the development history of GSMM and summarized the construction method of GSMM. Furthermore, the development and application of GSMM in industrial microorganisms are elaborated by using four typical industrial microorganisms (Bacillus subtilis, Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae) as examples. In addition, prospects in the development trend of GSMM are proposed.
Corynebacterium glutamicum/genetics*
;
Escherichia coli/genetics*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
9.Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum.
Hui LU ; Qi ZHANG ; Sili YU ; Yu WANG ; Ming KANG ; Shuangyan HAN ; Ye LIU ; Meng WANG
Chinese Journal of Biotechnology 2022;38(2):780-795
As a new CRISPR/Cas-derived genome engineering technology, base editing combines the target specificity of CRISPR/Cas and the catalytic activity of nucleobase deaminase to install point mutations at target loci without generating DSBs, requiring exogenous template, or depending on homologous recombination. Recently, researchers have developed a variety of base editing tools in the important industrial strain Corynebacterium glutamicum, and achieved simultaneous editing of two and three genes. However, the multiplex base editing based on CRISPR/Cas9 is still limited by the complexity of multiple sgRNAs, interference of repeated sequence and difficulty of target loci replacement. In this study, multiplex base editing in C. glutamicum was optimized by the following strategies. Firstly, the multiple sgRNA expression cassettes based on individual promoters/terminators was optimized. The target loci can be introduced and replaced rapidly by using a template plasmid and Golden Gate method, which also avoids the interference of repeated sequence. Although the multiple sgRNAs structure is still complicated, the editing efficiency of this strategy is the highest. Then, the multiple gRNA expression cassettes based on Type Ⅱ CRISPR crRNA arrays and tRNA processing were developed. The two strategies only require one single promoter and terminator, and greatly simplify the structure of the expression cassette. Although the editing efficiency has decreased, both methods are still applicable. Taken together, this study provides a powerful addition to the genome editing toolbox of C. glutamicum and facilitates genetic modification of this strain.
CRISPR-Cas Systems/genetics*
;
Corynebacterium glutamicum/metabolism*
;
Gene Editing
;
Plasmids
;
RNA, Guide/metabolism*
10.Construction and application of a synthetic promoter library for Corynebacterium glutamicum.
Moshi LIU ; Jiao LIU ; Guannan SUN ; Fuping LU ; Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2022;38(2):831-842
Promoter is an important genetic tool for fine-tuning of gene expression and has been widely used for metabolic engineering. Corynebacterium glutamicum is an important chassis for industrial biotechnology. However, promoter libraries that are applicable to C. glutamicum have been rarely reported, except for a few developed based on synthetic sequences containing random mutations. In this study, we constructed a promoter library based on the native promoter of odhA gene by mutating the -10 region and the bystanders. Using a red fluorescent protein (RFP) as the reporter, 57 promoter mutants were screened by fluorescence imaging technology in a high-throughput manner. These mutants spanned a strength range between 2.4-fold and 19.6-fold improvements of the wild-type promoter. The strongest mutant exhibited a 2.3-fold higher strength than the widely used strong inducible promoter Ptrc. Sequencing of all 57 mutants revealed that 55 mutants share a 1-4 bases shift (4 bases shift for 68% mutants) of the conserved -10 motif "TANNNT" to the 3' end of the promoter, compared to the wild-type promoter. Conserved T or G bases at different positions were observed for strong, moderate, and weak promoter mutants. Finally, five promoter mutants with different strength were employed to fine-tune the expression of γ-glutamyl kinase (ProB) for L-proline biosynthesis. Increased promoter strength led to enhanced L-proline production and the highest L-proline titer of 6.4 g/L was obtained when a promoter mutant with a 9.8-fold higher strength compared to the wild-type promoter was used for ProB expression. The use of stronger promoter variants did not further improve L-proline production. In conclusion, a promoter library was constructed based on a native C. glutamicum promoter PodhA. The new promoter library should be useful for systems metabolic engineering of C. glutamicum. The strategy of mutating native promoter may also guide the construction of promoter libraries for other microorganisms.
Corynebacterium glutamicum/metabolism*
;
Gene Library
;
Metabolic Engineering
;
Promoter Regions, Genetic/genetics*