1.Screening and identification of host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus.
Jinlei SUN ; Ruiming YU ; Liping ZHANG ; Zhongwang ZHANG ; Yonglu WANG ; Li PAN ; Quanwei ZHANG ; Xinsheng LIU
Chinese Journal of Biotechnology 2024;40(12):4533-4545
To screen and identify the key host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus (PEDV). The IP/pull-down assay and mass spectrometry were employed to screen and identify the host proteins interacting with Nsp15. The interaction between the host protein and Nsp15 was studied by co-immunoprecipitation and laser scanning confocal microscopy. Finally, Western blotting and RT-qPCR were employed to examine the interaction between SLC25a3 and PEDV. The recombinant eukaryotic expression vector pcDNA3.1(+)-Flag-Nsp15 was successfully constructed, and the host protein SLC25a3 interacting with PEDV Nsp15 was screened out. An interaction existed between SLC25a3 and Nsp15, and SLC25a3 significantly inhibited PEDV replication in a dose-dependent manner. SLC25a3 inhibits PEDV replication. The results of this study provide a basis for deciphering the role and mechanism of SLC25a3 in the host immune response to PEDV infection.
Porcine epidemic diarrhea virus/genetics*
;
Viral Nonstructural Proteins/metabolism*
;
Animals
;
Swine
;
Virus Replication
;
Coronavirus Infections/veterinary*
;
Swine Diseases/metabolism*
2.Development of a blocking ELISA based on a single-domain antibody target the S1 protein of porcine epidemic diarrhea virus.
Zhiqian MA ; Ge BAI ; Tianyu WANG ; Zhiwei LI ; Yang LI ; Shuqi XIAO ; Shuang LI
Chinese Journal of Biotechnology 2021;37(9):3221-3230
The aim of this study was to develop a blocking enzyme-linked immunosorbent assay (bELISA) based on a biotinylated nanobody target the S1 protein of porcine epidemic diarrhea virus (PEDV) for detecting the anti-PEDV antibodies and evaluating the immune effect of the vaccine. The gene encoding the single-domain antibody sdAb3 target the PEDV S1 protein was amplified and the Avitag sequence was fused at its 3'-end. The PCR product was cloned into the expression vector pET-21b for expression and purification of the sdAb3-Avitag protein. The purified sdAb3-Avitag fusion protein was biotinylated and its activity was determined. Using the recombinant S1 protein as a coating antigen, a bELISA was established and optimized. Serum samples were tested in parallel by the bELISA and a commercial kit. The recombinant vector pET21b-sdAb3-Avitag was constructed to express the tagged sdAb3. After induction for expression, the biotin-labeled sdAb3 (sdAb3-Biotin) with high purity and good activity was obtained. For the optimized bELISA, the coating concentration of the S1 protein was 200 ng/well, the serum dilution was 1:2 and incubated for 2 h, the dilution ratio of the biotinylated sdAb3 was 1:8 000 and incubated for 30 min, the dilution of the enzyme-labeled antibody was 1:5 000 and incubated for 30 min. The bELISA had no cross reaction with the sera of major porcine viruses including transmissible gastroenteritis virus, porcine reproductive and respiratory syndrome virus and showed good specificity and reproducibility. For a total of 54 porcine serum samples tested, the overall compliance rate of the bELISA with a commercial kit was 92.56%. This study developed a rapid and reliable bELISA method, which can be used for serosurveillance and vaccine evaluation for PEDV.
Animals
;
Antibodies, Viral
;
Coronavirus Infections/veterinary*
;
Enzyme-Linked Immunosorbent Assay
;
Porcine epidemic diarrhea virus/genetics*
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Single-Domain Antibodies
;
Swine
;
Swine Diseases
3.Immunization against porcine epidemic diarrhea virus and vaccine development.
Shijuan DONG ; Chunfang XIE ; Fusheng SI ; Bingqing CHEN ; Ruisong YU ; Zhen LI
Chinese Journal of Biotechnology 2021;37(8):2603-2613
Porcine epidemic diarrhea (PED) is a major disease of pigs that inflicts heavy losses on the global pig industry. The etiologic agent is the porcine epidemic diarrhea virus (PEDV), which is assigned to the genus Alphacoronavirus in the family Coronaviridae. This review consists of five parts, the first of which provides a brief introduction to PEDV and its epidemiology. Part two outlines the passive immunity in new born piglets and the important role of colostrum, while the third part summarizes the characteristics of the immune systems of pregnant sows, discusses the concept of the "gut-mammary gland-secretory IgA(sIgA) axis" and the possible underpinning mechanisms, and proposes issues to be addressed when designing a PEDV live vaccine. The final two parts summarizes the advances in the R&D of PEDV vaccines and prospects future perspectives on prevention and control of PEDV, respectively.
Animals
;
Antibodies, Viral
;
Coronavirus Infections/veterinary*
;
Female
;
Immunization
;
Porcine epidemic diarrhea virus
;
Pregnancy
;
Swine
;
Swine Diseases/prevention & control*
;
Viral Vaccines
4.Immunogenicity of engineered Lactobacillus plantarum expressing porcine epidemic diarrhea virus S1 gene.
Mincai NIE ; Jianguo YUE ; Yichao DENG ; Shu YANG ; Ling ZHU ; Zhiwen XU
Chinese Journal of Biotechnology 2021;37(8):2779-2785
To investigate whether the engineered Lactobacillus plantarum expressing the porcine epidemic diarrhea virus (PEDV) S1 gene can protect animals against PEDV, guinea pigs were fed with recombinant L. plantarum containing plasmid PVE5523-S1, with a dose of 2×10⁸ CFU/piece, three times a day, at 14 days intervals. Guinea pigs fed with wild type L. plantarum and the engineered L. plantarum containing empty plasmid pVE5523 were used as negative controls. For positive control, another group of guinea pigs were injected with live vaccine for porcine epidemic diarrhea and porcine infectious gastroenteritis (HB08+ZJ08) by intramuscular injection, with a dose of 0.2 mL/piece, three times a day, at 14 days intervals. Blood samples were collected from the hearts of the four groups of guinea pigs at 0 d, 7 d, 14 d, 24 d, 31 d, 41 d and 48 d, respectively, and serum samples were isolated for antibody detection and neutralization test analysis by enzyme-linked immunosorbent assay (ELISA). The spleens of guinea pigs were also aseptically collected to perform spleen cells proliferation assay. The results showed that the engineered bacteria could stimulate the production of secretory antibody sIgA and specific neutralizing antibody, and stimulate the increase of IL-4 and IFN-γ, as well as the proliferation of spleen cells. These results indicated that the engineered L. plantarum containing PEDV S1 induced specific immunity toward PEDV in guinea pigs, which laid a foundation for subsequent oral vaccine development.
Animals
;
Antibodies, Viral
;
Coronavirus Infections/veterinary*
;
Guinea Pigs
;
Lactobacillus plantarum/genetics*
;
Porcine epidemic diarrhea virus/genetics*
;
Swine
;
Swine Diseases
;
Viral Vaccines/genetics*
5.Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation.
Ying SHAN ; Zi-Qi LIU ; Guo-Wei LI ; Cong CHEN ; Hao LUO ; Ya-Jie LIU ; Xun-Hui ZHUO ; Xing-Fen SHI ; Wei-Huan FANG ; Xiao-Liang LI
Journal of Zhejiang University. Science. B 2018;19(7):570-580
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Active Transport, Cell Nucleus
;
Animals
;
Coronavirus Infections
;
immunology
;
veterinary
;
virology
;
Genes, Viral
;
Host-Pathogen Interactions
;
immunology
;
Interferons
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
Interleukins
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
NF-kappa B
;
metabolism
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
physiology
;
Porcine epidemic diarrhea virus
;
genetics
;
pathogenicity
;
physiology
;
Promoter Regions, Genetic
;
Swine
;
Swine Diseases
;
immunology
;
virology
6.Research Advances in the Porcine Deltacoronavirus.
Puxian FANG ; Liurong FANG ; Nan DONG ; Shaobo XIAO
Chinese Journal of Virology 2016;32(2):243-248
The deltacoronavirus is a new member of the subfamily Coronaviridae of the family Coronaviridae. Deltacoronaviruses can infect birds and mammals. Deltacoronaviruses were detected in early 2007 in Asian leopard cats and Chinese ferret badgers. In 2014, porcine deltacoronavirus (PDCoV) infection spread rapidly in the USA. Moreover, cell culture-adapted PDCoV has been obtained from infected piglets. Animal experiments have confirmed that the isolated PDCoV is highly pathogenic and causes severe diarrhea in piglets. Thus, the PDCoV can be considered to be a good model to study the deltacoronavirus. In this review, we discuss the etiology, epidemiology, pathogenicity, culture, and diagnostic methods of the PDCoV.
Animals
;
Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
veterinary
;
virology
;
Diarrhea
;
veterinary
;
virology
;
Phylogeny
;
Swine
;
Swine Diseases
;
virology
7.The Isolation and Identification of Infectious Bronchitis Virus PTFY Strain in Muscovy Ducks.
Xiaoping WU ; Shulei PAN ; Wuduo ZHOU ; Yijiang WU ; Yifan HUANG ; Baocheng WU
Chinese Journal of Virology 2016;32(2):203-209
In July 2009, some farms of breeding Muscovy ducks on the peak of egg laying suffered the decrease of hatching rate and the quality of the eggs showing low mortality and no evident respiratory symptoms. The swelling and congestive ovary was visible after autopsy. This study was brought out for the diagnosis of these cases. The virus was isolated and identified by the methods of virus culture in chicken embryo, physical and chemical properties test, hemagglutinin test, NDV (Newcastle diseases Virus) interference test, electron microscope observation, pathogenicity test and the gene sequence analysis. The results indicated the virus showed the characters of inducing dwarf embryo after inocubation, the sensibility to lipid solvent and the hemagglutination capacity after pancreatic enzyme treatment, the typical morphology of coronavirus, the interference to NDV replication and the homology among 84.7% - 99% of the particial N gene sequences to the reference IBV (Avian infectious bronchitis virus) strains. The strain was identified as IBV isolate and this study confirmed the pathogenicity of IBV to Muscovy ducks.
Amino Acid Sequence
;
Animals
;
Chick Embryo
;
Coronavirus Infections
;
veterinary
;
virology
;
Ducks
;
virology
;
Female
;
Infectious bronchitis virus
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
virology
;
Sequence Alignment
8.Sequencing and Serologic Identification of S1 Genes of Infectious Bronchitis Viruses Isolated during 2012-2013 in Guangxi Province, China.
Lihua ZHANG ; Cuilan WU ; Zhipeng ZHANG ; Yining HE ; Heming LI ; Lili QIN ; Tianchao WEI ; Meilan MO ; Ping WEI
Chinese Journal of Virology 2016;32(1):62-69
We wished to ascertain the prevalence as well as the genetic and antigenic variation of infectious bronchitis viruses (IBVs) circulating in the Guangxi Province of China in recent years. The S1 gene of 15 IBV field isolates during 2012-2013 underwent analyses in terms of the similarity of amino-acid sequences, creation of phylogenetic trees, recombination, and serologic identification. Similarities in amino-acid sequences among the 15 isolates of the S1 gene were 54.3%-99.6%, and 43.3%-99.3% among 15 isolates and reference strains. Compared with the vaccine strain H120, except for GX-YL130025, the other 14 isolates showed a lower similarity of amino-acid sequences of the S1 gene (65.1-81.4%). Phylogenetic analyses of the S1 gene suggested that 15 IBV isolates were classified into eight genotypes, with the predominant genotype being new-type II. Recombination analyses demonstrated that the S1 gene of the GX-NN130048 isolate originated from recombination events between vaccine strain 4/91 and a LX4-like isolate. Serotyping results suggested that seven serotypes prevailed during 2012-2013 in Guangxi Province, and that only one isolate was consistent with the vaccine strain H120 in serotype (which has been used widely in recent years). The serotype of recombinant isolate GX-NN130048 was different from those of its parent strains. These results suggested that not only the genotype, but also the serotype of IBV field isolates in Guangxi Province had distinct variations, and that increasing numbers of genotypes and serotypes are in circulation. We showed that recombination events can lead to the emergence of new serotypes. Our study provides new evidence for understanding of the molecular mechanisms of IBV variations, and the development of new vaccines against IBVs.
Animals
;
Antibodies, Viral
;
blood
;
Chickens
;
China
;
Coronavirus Infections
;
blood
;
veterinary
;
virology
;
Genetic Variation
;
Genotype
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
blood
;
virology
;
Sequence Homology, Amino Acid
;
Spike Glycoprotein, Coronavirus
;
chemistry
;
genetics
;
immunology
9.M gene analysis of canine coronavirus strains detected in Korea.
Seok Young JEOUNG ; So Yun ANN ; Hyun Tae KIM ; Doo KIM
Journal of Veterinary Science 2014;15(4):495-502
The purpose of this study was to investigate the genetic features of canine coronavirus (CCV) strains detected in Korea. M gene sequences obtained for isolates from 22 dogs with enteritis over a 5-year period were evaluated. Sequence comparison revealed that the 22 Korean CCV strains had an 87.2 to 100% nucleotide homology. Comparing to the typical reference CCV strains (type II), the nucleotide sequence of Korean strains had homology ranged from 86.3% to 98.3% (89.1% to 99.2% for the amino acid sequence) and 87.7% to 97.8% (92.4% to 100% for the amino acid sequence) when compared to FCoV-like CCV strains (type I). Three amino acid variations in the M gene were characteristic for the Korean CCV strains. Phylogenetic analysis demonstrated that the 22 Korean CCV strains belonged to four typical CCV clusters (i.e., a unique Korean CCV cluster, a type II and transmissible gastroenteritis virus cluster, an intermediate cluster between type I and II, and a type I cluster). This study was the first to identify genetic differences of the M gene from Korean CCV strains and provided a platform for molecular identification of different Korean CCV strains.
Amino Acid Sequence
;
Animals
;
Coronavirus Infections/epidemiology/*veterinary/virology
;
Coronavirus, Canine/*isolation & purification
;
Dog Diseases/*epidemiology/virology
;
Dogs
;
Female
;
Male
;
Molecular Sequence Data
;
Phylogeny
;
Polymerase Chain Reaction/veterinary
;
Republic of Korea/epidemiology
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Viral Matrix Proteins/*genetics/metabolism
10.Genotypes and serotypes of avian infectious bronchitis viruses isolated during 2009-2011 in Guangxi, China.
Li-Li QIN ; Meng LI ; Rong SUN ; Zhi-Jin WU ; Kun HE ; Mei-Lan MO ; Tian-Chao WEI ; Ping WEI
Chinese Journal of Virology 2014;30(2):162-170
In order to investigate the prevalence and track genetic and antigenic evolutions of infectious bronchitis virus (IBV) and their prevalence in Guangxi, China since 1985, gene amplification and sequencing and virus neutralization (VN) test on chicken embryo tracheal organ cultures were used in genotyping and serotyping of 28 IBV isolates during 2009-2011 in Guangxi. The results of N gene sequencing and comparison showed that the 28 isolates and reference strains were classified into three groups, and most isolates belonged to group Ill, while the isolates in 1985-2008 belonged to groups IV and II. The data of VN test indicated that the 28 isolates belonged to 6 serotypes; among them, 71. 4% belonged to serotypes 1, 2, and 3, and 11 (39.3%) shared the same serotype with the current vaccine strains. Given the data of our previous study, it is found that prevalent serotypes and their proportions varied in different areas of Guangxi and during different periods. These data lay a good foundation for developing an oil-emulsified inactivated polyvalent vaccine containing local dominant serotypes for the effective prevention and control of infectious bronchitis.
Animals
;
Antibodies, Viral
;
immunology
;
Chick Embryo
;
Chickens
;
China
;
epidemiology
;
Coronavirus Infections
;
epidemiology
;
immunology
;
veterinary
;
virology
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
epidemiology
;
immunology
;
virology

Result Analysis
Print
Save
E-mail