1.Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected patients from different stages.
Hui-Xia GAO ; Ya-Nan LI ; Zun-Gui XU ; Yu-Ling WANG ; Hai-Bin WANG ; Jin-Feng CAO ; De-Qin YUAN ; Li LI ; Yi XU ; Zhi ZHANG ; Ying HUANG ; Jian-Hua LU ; Yu-Zhen LIU ; Er-Hei DAI
Chinese Medical Journal 2020;133(12):1479-1480
2.Development of serological detection assays for human coronavirus HKU1 infection and its application.
Wei-min ZHOU ; Wen-ling WANG ; Wen-jie TAN ; Ling-lin ZHANG ; Xiao YIN ; Rou-jian LU ; Hui-juan WANG
Chinese Journal of Experimental and Clinical Virology 2010;24(5):376-379
OBJECTIVETo express the nuclear capsid protein (N protein) and the spike protein (S protein) of HCoV-HKU1, and to develop the corresponding serum assay for antibody detection.
METHODSThe N protein of HCoV-HKU1 was expressed in E. Coli, anti-N antibody assay was established using Western Blotting with turn-based membrane. HCoV-HKU1 S protein was constructed in the eukaryotic expression plasmids, and confirmed by Western Blotting, S antibody assay was established using indirect immunofluorescence assay (IFA). We analyzed anti-S and anti-N antibody among 100 normal adult serum.
RESULTSExpression of S and N protein were confirmed; 100 normal adult serum were analyzed using the established serological detection assay, in which HCoV-HKU1 S antibody positive rate was 47%, N antibody positive rate was 48%, Both S and N antibodies positive were 21%, Both S and N antibodies negative were 22%. Co-detection S and N antibody was achieved 74% positive rate.
CONCLUSIONThe methods we established here could be used for serological analysis of HCoV-HKU1. Either detection of HCoV-HKU1 S or N antibodies achieved good results. Higher positive detection rate of anti-S or anti-N antibody was found in the normal adults.
Antibodies, Viral ; blood ; immunology ; Capsid Proteins ; genetics ; immunology ; Cell Line ; Coronavirus ; genetics ; immunology ; isolation & purification ; physiology ; Coronavirus Infections ; blood ; diagnosis ; immunology ; virology ; Humans ; Membrane Glycoproteins ; genetics ; immunology ; Serologic Tests ; methods ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins ; genetics ; immunology
3.Strategies for vaccine development of COVID-19.
Limin YANG ; Deyu TIAN ; Wenjun LIU
Chinese Journal of Biotechnology 2020;36(4):593-604
An epidemic of acute respiratory syndrome in humans, which appeared in Wuhan, China in December 2019, was caused by a novel coronavirus (SARS-CoV-2). This disease was named as "Coronavirus Disease 2019" (COVID-19). SARS-CoV-2 was first identified as an etiological pathogen of COVID-19, belonging to the species of severe acute respiratory syndrome-related coronaviruses (SARSr-CoV). The speed of both the geographical transmission and the sudden increase in numbers of cases is much faster than SARS and Middle East respiratory syndrome (MERS). COVID-19 is the first global pandemic caused by a coronavirus, which outbreaks in 211 countries/territories/areas. The vaccine against COVID-19, regarded as an effective prophylactic strategy for control and prevention, is being developed in about 90 institutions worldwide. The experiences and lessons encountered in the previous SARS and MERS vaccine research can be used for reference in the development of COVID-19 vaccine. The present paper hopes to provide some insights for COVID-19 vaccines researchers.
Betacoronavirus
;
immunology
;
Biomedical Research
;
Coronavirus Infections
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
Humans
;
Internationality
;
Middle East Respiratory Syndrome Coronavirus
;
immunology
;
Pandemics
;
prevention & control
;
Pneumonia, Viral
;
epidemiology
;
immunology
;
prevention & control
;
virology
;
SARS Virus
;
immunology
;
Severe Acute Respiratory Syndrome
;
immunology
;
Viral Vaccines
;
immunology
4.Replication and transmission mechanisms of highly pathogenic human coronaviruses.
Journal of Zhejiang University. Medical sciences 2020;49(1):324-339
The three known human highly pathogenic coronaviruses are severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human highly pathogenic coronaviruses are composed of non-structural proteins, structural proteins and accessory proteins. Viral particles recognize host receptors via spike glycoprotein (S protein), enter host cells by membrane fusion, replicate in host cells through large replication-transcription complexes, and promote proliferation by interfering with and suppressing the host's immune response. Human highly pathogenic coronaviruses are hosted by humans and vertebrates. Viral particles are transmitted through droplets, contact and aerosols or likely through digestive tract, urine, eyes and other routes. This review discusses the mechanisms of proliferation and transmission of highly pathogenic human coronaviruses based on the results of existing research, providing basis for future study on interrupting the transmission and pathogenicity of human highly pathogenic coronaviruses.
Animals
;
Betacoronavirus
;
physiology
;
Coronavirus Infections
;
immunology
;
transmission
;
virology
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
physiology
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
transmission
;
virology
;
SARS Virus
;
physiology
;
Virus Replication
;
physiology
5.Study on therapeutic effect of Chaiyin Particles on combining disease with syndrome of human coronavirus pneumonia with pestilence attacking lung syndrome based on regulation of immune function.
Yan-Yan BAO ; Yu-Jing SHI ; Shan-Shan GUO ; Zi-Han GENG ; Ying-Jie GAO ; Lei BAO ; Rong-Hua ZHAO ; Jing SUN ; Gui-Min ZHANG ; Yong-Xia GUAN ; Xiao-Lan CUI
China Journal of Chinese Materia Medica 2020;45(13):3020-3027
According to the classification of traditional Chinese medicine syndromes of coronavirus disease 2019 by the national competent authority, this study determined that human coronavirus 229 E(HCoV-229 E) was infected in a mouse model of cold and dampness syndrome, so as to build the human coronavirus pneumonia with pestilence attacking lung syndrome model. The model can simulate the traditional Chinese medicine treatment of common disease syndromes in Coronavirus Disease 2019 Diagnosis and Treatment Program(the sixth edition for trial). Specific steps were as follows. ABALB/c mouse model of cold and dampness syndrome was established, based on which, HCoV-229 E virus was infected; then the experiment was divided into normal control group, infection control group, cold-dampness control group, cold-dampness infection group(the model group), high-dose Chaiyin Particles group(8.8 g·kg~(-1)·d~(-1)), and low-dose Chaiyin Particles group(4.4 g·kg~(-1)·d~(-1)). On the day of infection, Chaiyin Particles was given for three consecutive days. Lung tissues were collected the day after the last dose, and the lung index and inhibition rate were calculated. The nucleic acid of lung tissue was extracted, and the HCoV-229 E virus load was detected by Real-time fluorescent quantitative RT-PCR. Blood leukocytes were separated, and the percentage of T and B lymphocytes was detected by flow cytometry. Lung tissue protein was extracted, and IL-6, IL-10, TNF-α and IFN-γ contents were detected by ELISA. High and low-dose Chaiyin Particles significantly reduced the lung index(P<0.01) of mice of human coronavirus pneumonia with pestilence attacking the lung syndrome, and the inhibition rates were 61.02% and 55.45%, respectively. Compared with the model control group, high and low-dose Chaiyin Particles significantly increased cross blood CD4~+ T lymphocytes, CD8~+T lymphocytes and total B lymphocyte percentage(P<0.05, P<0.01), and reduced IL-10, TNF-α and IFN-γ levels in lungs(P<0.01). In vitro results showed that TC_(50), TC_0, IC_(50) and TI of Chaiyin Particles were 4.46 mg·mL~(-1), 3.13 mg·mL~(-1), 1.12 mg·mL~(-1) and 4. The control group of in vitro culture cells had no HCoV-229 E virus nucleic acid expression. The expression of HCoV-229 E virus nucleic acid in the virus control group was 1.48×10~7 copies/mL, and Chaiyin Particles significantly reduced HCoV-229 E expression at doses of 3.13 and 1.56 mg·mL~(-1), and the expression of HCoV-229 E nucleic acid was 9.47×10~5 and 9.47×10~6 copies/mL, respectively. Chaiyin Particles has a better effect on the mouse model with human coronavirus pneumonia with pestilence attacking the lung syndrome, and could play a role by enhancing immunity, and reducing inflammatory factor expression.
Animals
;
Coronavirus 229E, Human
;
Coronavirus Infections
;
immunology
;
therapy
;
Drugs, Chinese Herbal
;
therapeutic use
;
Humans
;
Lung
;
immunology
;
virology
;
Medicine, Chinese Traditional
;
Mice
;
Mice, Inbred BALB C
6.Coagulation and immune function indicators for monitoring of coronavirus disease 2019 and the clinical significance.
Junhua ZHANG ; Tie LI ; Rong HUANG ; Rong GUI ; Sai CHEN
Journal of Central South University(Medical Sciences) 2020;45(5):525-529
OBJECTIVES:
To explore the significance of coagulation and immune function indicators in clinical diagnosis and treatment of coronavirus disease 2019 (COVID-19).
METHODS:
All patients with COVID-19 diagnosed and treated in First People's Hospital of Yueyang from January to March 2020 were enrolled. The general data of patients were collected. The patients were assigned into a light group (=20), an ordinary group (=33), a severe group (=23), and a critically severe group (=7) according to the severity of the disease. Coagulation and immune function indicators of each group were compared, and the relevance of coagulation and immune function indicators was analyzed.
RESULTS:
The age of COVID-19 patients in Yueyang City was mainly between 45 and 65 years old. There was a significant difference in the coagulation function and immune-related indicators in each group of patients (all <0.05).
CONCLUSIONS
There are some abnormalities in coagulation and immune function in patients with COVID-19, which possess significance for clinical diagnosis and treatment of the disease.
Aged
;
Betacoronavirus
;
Blood Coagulation
;
China
;
Coronavirus Infections
;
diagnosis
;
immunology
;
Humans
;
Immune System
;
physiopathology
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
immunology
7.Coronavirus Disease 2019 Influenza A in Children: An Observational Control Study in China.
Yang ZHAO ; De Lin SUN ; Heather C BOUCHARD ; Xin Xin ZHANG ; Gang WAN ; Yi Wei HAO ; Shu Xin HE ; Yu Yong JIANG ; Lin PANG
Biomedical and Environmental Sciences 2020;33(8):614-619
This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.8 years old) were compared with age- and sex-matched 69 hospitalized and 69 outpatient children with influenza A from a hospital in China. The participants' epidemiological history, family cluster, clinical manifestations, and blood test results were assessed. Compared with either inpatients or outpatients with influenza A, children with COVID-19 showed significantly more frequent family infections and higher ratio of low fever (< 37.3 °C), but shorter cough and fever duration, lower body temperature, and lower rates of cough, fever, high fever (> 39 °C), nasal congestion, rhinorrhea, sore throat, vomiting, myalgia or arthralgia, and febrile seizures. They also showed higher counts of lymphocytes, T lymphocyte CD8, and platelets and levels of cholinesterase, aspartate aminotransferase, lactate dehydrogenase, and lactic acid, but lower serum amyloid, C-reactive protein, and fibrinogen levels and erythrocyte sedimentation rate, and shorter prothrombin time. The level of alanine aminotransferase in children with COVID-19 is lower than that in inpatients but higher than that in outpatients with influenza A. Pediatric COVID-19 is associated with more frequent family infection, milder symptoms, and milder immune responses relative to pediatric influenza A.
Betacoronavirus
;
physiology
;
Case-Control Studies
;
Child
;
Coronavirus Infections
;
blood
;
epidemiology
;
immunology
;
virology
;
Female
;
Humans
;
Influenza, Human
;
blood
;
epidemiology
;
immunology
;
Male
;
Pandemics
;
Pneumonia, Viral
;
blood
;
epidemiology
;
immunology
;
virology
8.From H1N1 to 2019-nCoV, what do we learn?
Gui-E LIU ; Yuan TIAN ; Wen-Jun ZHAO ; Shuang-Ming SONG ; Lei LI
Chinese Journal of Traumatology 2020;23(4):187-189
The COVID-19 pandemic is still raging across the world. Everyday thousands of infected people lost their lives. What is worse, there is no specific medicine and we do not know when the end of the pandemic will come. The nearest global pandemic is the 1918 influenza, which caused about 50 million deaths and partly terminate the World War Ⅰ. We believe that no matter the virus H1N1 for the 1918 influenza or 2019-nCoV for COVID-19, they are essentially the same and the final cause of death is sepsis. The definition and diagnostic/management criteria of sepsis have been modified several times but the mortality rate has not been improved until date. Over decades, researchers focus either on the immunosuppression or on the excessive inflammatory response following trauma or body exposure to harmful stimuli. But the immune response is very complex with various regulating factors involved in, such as neurotransmitter, endocrine hormone, etc. Sepsis is not a kind of disease, instead a misbalance of the body following infection, trauma or other harmful stimulation. Therefore we should re-think sepsis comprehensively with the concept of systemic biology, i.e. inflammationomics.
Betacoronavirus
;
Coronavirus Infections
;
complications
;
epidemiology
;
immunology
;
Humans
;
Immune Tolerance
;
Inflammation
;
complications
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human
;
complications
;
epidemiology
;
immunology
;
Pandemics
;
Pneumonia, Viral
;
complications
;
epidemiology
;
immunology
;
Sepsis
;
etiology
9.CD69+NK cells contribute to the murine hepatitis virus strain 3-induced murine hepatitis.
Lin DING ; Tao CHEN ; Xiao-jing WANG ; Li ZHOU ; Ai-chao SHI ; Qin NING
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(4):505-510
The role of hepatic CD69+ natural killer (NK) cells in virus-induced severe liver injury and subsequent hepatic failure is not well defined. In this study, a mouse model of fulminant liver failure (FHF) induced by murine hepatitis virus strain 3 (MHV-3) was used to study the role of hepatic CD69+NK cells in the development of FHF. The CD69 expression in NK cells in the liver, spleen, bone marrow and peripheral blood was detected by using flow cytometry. The correlation between the CD69 level in hepatic NK cells and liver injury was studied. The functional marker (CD107a), and activating and inhibitory receptor (NKG2D and NKG2A) expressed on CD69+NK cells and CD69-NK cells were detected by using flow cytometry. Pro-inflammatory cytokines (IL-9, IFN-γ and TNF-α) were also examined by using intracellular staining. After MHV-3 infection, the number of CD69+NK cells in the liver of BALB/cJ mice was increased markedly and peaked at 72 h post-infection. Similar changes were also observed in the spleen, bone marrow and peripheral blood. Meanwhile, the CD69 expression in hepatic NK cells was highly correlated with the serum level of ALT and AST. The expression of CD107a and NKG2D, as well as the production of TNF-α, IFN-γ and IL-9 in hepatic CD69+NK cells was all significantly up-regulated during 48-72 h post-infection. In contrast, the NKG2A expression was increased in hepatic CD69-NK cells but not in CD69+NK cells. These results suggested that hepatic CD69+NK cells play a pivotal role in the pathogenesis of FHF by enhancing degranulation and cytotoxic ability of NK cells and increasing the production of pro-inflammatory cytokines.
Animals
;
Antigens, CD
;
immunology
;
Antigens, Differentiation, T-Lymphocyte
;
immunology
;
Coronavirus Infections
;
immunology
;
Female
;
Hepatitis, Viral, Animal
;
immunology
;
Killer Cells, Natural
;
immunology
;
Lectins, C-Type
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Murine hepatitis virus
;
immunology
10.Evaluation of the protection conferred by several avian infectious bronchitis attenuated vaccines against the field strain CK/CH/LDL/97 I in China.
Xiao-Nan ZHAGN ; Yu WANG ; Cheng-Ren LI ; Qiao-Ran LIU ; Zong Xi HAN ; Yu-Hao SHAO ; Sheng-Wang LIU ; Xian-Gang KONG
Chinese Journal of Virology 2008;24(2):111-116
The entire S1 protein gene of five infectious bronchitis (IB) vaccine strains (JAAS, IBN, Jilin, J9, H120) used in China were compared with that of the IB field isolate CK/CH/LDL/97 I present in China. The nucleotide and deduced amino acid similarities between the five IB vaccine strains and the field strain, CK/CH/LDL/97 I, were not more than 76.4% and 78.7%, respectively. Phylogenetic analysis based on the S1 gene showed that the vaccine strains and the field strain belonged to different clusters and had larger evolutionary distances, indicating that they were of different genotypes. The five vaccine strains were used for protection test against challenge of the field isolate CK/CH/LDL/97 I. The chickens inoculated with five vaccine strains showed morbidity as high as 30%-100% after challenged with the CK/CH/ LDL/97 I strain. The organ samples at 5 days post challenge showed that the viral detection rates were 50%-90% and 10%-30% for trachea and kidney, respectively. The live attenuated vaccines only provided partial protection to the vaccinated chickens against heterologous IBV infection, CK/CH/LDL/97 I.
Animals
;
Antibodies, Viral
;
blood
;
Chickens
;
virology
;
Coronavirus Infections
;
prevention & control
;
veterinary
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Membrane Glycoproteins
;
genetics
;
Phylogeny
;
Poultry Diseases
;
prevention & control
;
Spike Glycoprotein, Coronavirus
;
Vaccines, Attenuated
;
immunology
;
Viral Envelope Proteins
;
genetics
;
Viral Vaccines
;
immunology