1.Advances in recently identified coronaviruses.
Chinese Journal of Virology 2013;29(1):65-70
Coronaviruses are a large family of viruses which include viruses that cause the common cold and severe acute respiratory syndrome (SARS) in humans and other diseases in animals. There are considerable genetic diversities within coronaviruses due to their wide rang hosts and their special gene replication and transcription mechanisms. During this process, gene recombinations often occur, resulting in novel subtype or coronavirus emerge constantly. Of note are SARS-like-CoVs and novel HCoV-EMC identified in 2012. This minireview summarized major advances of recently identified coronaviruses, focusing on the genome structures and interspecies jumping mechanism of coronavirus.
Animals
;
Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
transmission
;
Humans
;
Phylogeny
2.Research Advances in the Porcine Deltacoronavirus.
Puxian FANG ; Liurong FANG ; Nan DONG ; Shaobo XIAO
Chinese Journal of Virology 2016;32(2):243-248
The deltacoronavirus is a new member of the subfamily Coronaviridae of the family Coronaviridae. Deltacoronaviruses can infect birds and mammals. Deltacoronaviruses were detected in early 2007 in Asian leopard cats and Chinese ferret badgers. In 2014, porcine deltacoronavirus (PDCoV) infection spread rapidly in the USA. Moreover, cell culture-adapted PDCoV has been obtained from infected piglets. Animal experiments have confirmed that the isolated PDCoV is highly pathogenic and causes severe diarrhea in piglets. Thus, the PDCoV can be considered to be a good model to study the deltacoronavirus. In this review, we discuss the etiology, epidemiology, pathogenicity, culture, and diagnostic methods of the PDCoV.
Animals
;
Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
veterinary
;
virology
;
Diarrhea
;
veterinary
;
virology
;
Phylogeny
;
Swine
;
Swine Diseases
;
virology
3.Importance of Specimen Type and Quality in Diagnosing Middle East Respiratory Syndrome.
Hee Jae HUH ; Jae Hoon KO ; Young Eun KIM ; Chang Hun PARK ; Geehay HONG ; Rihwa CHOI ; Shinae YU ; Sun Young CHO ; Ji Man KANG ; Myoung Keun LEE ; Chang Seok KI ; Eun Suk KANG ; Nam Yong LEE ; Jong Won KIM ; Yae Jean KIM ; Young Eun HA ; Cheol In KANG ; Doo Ryeon CHUNG ; Kyong Ran PECK ; Jae Hoon SONG
Annals of Laboratory Medicine 2017;37(1):81-83
4.Development of serological detection assays for human coronavirus HKU1 infection and its application.
Wei-min ZHOU ; Wen-ling WANG ; Wen-jie TAN ; Ling-lin ZHANG ; Xiao YIN ; Rou-jian LU ; Hui-juan WANG
Chinese Journal of Experimental and Clinical Virology 2010;24(5):376-379
OBJECTIVETo express the nuclear capsid protein (N protein) and the spike protein (S protein) of HCoV-HKU1, and to develop the corresponding serum assay for antibody detection.
METHODSThe N protein of HCoV-HKU1 was expressed in E. Coli, anti-N antibody assay was established using Western Blotting with turn-based membrane. HCoV-HKU1 S protein was constructed in the eukaryotic expression plasmids, and confirmed by Western Blotting, S antibody assay was established using indirect immunofluorescence assay (IFA). We analyzed anti-S and anti-N antibody among 100 normal adult serum.
RESULTSExpression of S and N protein were confirmed; 100 normal adult serum were analyzed using the established serological detection assay, in which HCoV-HKU1 S antibody positive rate was 47%, N antibody positive rate was 48%, Both S and N antibodies positive were 21%, Both S and N antibodies negative were 22%. Co-detection S and N antibody was achieved 74% positive rate.
CONCLUSIONThe methods we established here could be used for serological analysis of HCoV-HKU1. Either detection of HCoV-HKU1 S or N antibodies achieved good results. Higher positive detection rate of anti-S or anti-N antibody was found in the normal adults.
Antibodies, Viral ; blood ; immunology ; Capsid Proteins ; genetics ; immunology ; Cell Line ; Coronavirus ; genetics ; immunology ; isolation & purification ; physiology ; Coronavirus Infections ; blood ; diagnosis ; immunology ; virology ; Humans ; Membrane Glycoproteins ; genetics ; immunology ; Serologic Tests ; methods ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins ; genetics ; immunology
5.Visual Detection of Human Coronavirus NL63 by Reverse Transcription Loop-Mediated Isothermal Amplification.
Heyuan GENG ; Shengqiang WANG ; Xiaoqian XIE ; Yu XIAO ; Ting ZHANG ; Wenjie TAN ; Chuan SU
Chinese Journal of Virology 2016;32(1):56-61
A simple and sensitive assay for rapid detection of human coronavirus NL63 (HCoV-NL63) was developed by colorimetic reverse transcription loop-mediated isothermal amplification (RT-LAMP). The method employed six specially designed primers that recognized eight distinct regions of the HCoV-NL63 nucleocapsid protein gene for amplification of target sequences under isothermal conditions at 63 degrees C for 1 h Amplification of RT-LAMP was monitored by addition of calcein before amplification. A positive reaction was confirmed by change from light-brown to yellow-green under visual detection. Specificity of the RT-LAMP assay was validated by cross-reaction with different human coronaviruses, norovirus, influenza A virus, and influenza B virus. Sensitivity was evaluated by serial dilution of HCoV-NL63 RNA from 1.6 x 10(9) to 1.6 x 10(1) per reaction. The RT-LAMP assay could achieve 1,600 RNA copies per reaction with high specificity. Hence, our colorimetric RT-LAMP assay could be used for rapid detection of human coronavirus NL63.
Colorimetry
;
methods
;
Coronavirus Infections
;
diagnosis
;
virology
;
Coronavirus NL63, Human
;
genetics
;
isolation & purification
;
DNA Primers
;
genetics
;
Humans
;
Nucleic Acid Amplification Techniques
;
methods
;
Reverse Transcription
;
Sensitivity and Specificity
6.Detection of Middle East Respiratory Syndrome Coronavirus by Reverse-transcription Loop-Mediated Isothermal Amplification.
Guan LI ; Kai NIE ; Dan ZHANG ; Xinna LI ; Yanqun WANG ; Wenjie TAN ; Xuejun MA
Chinese Journal of Virology 2015;31(3):269-275
A simple, rapid and sensitive colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was developed for rapid detection of Middle East respiratory syndrome coronavirus (MERS-CoV). The method employed six primers that recognized sequences of a nucleocapsid gene for amplification of nucleic acids under isothermal conditions at 63 degrees C for 60 min. Products were detected through a LA-320c Loopamp Turbidimeter (real-time RT-LAMP) or visual inspection of color change by pre-addition of Hydroxynaphthol Blue dye (visual RT-LAMP). Specificity of RT-LAMP was validated by detection of several human coronaviruses and common respiratory viruses. MERS-CoV real-time RT-LAMP had a linear correlation (R2) of 0.995 at 10(3)-10(6) copies. The limit of detection of real-time RT-LAMP, visual RT-LAMP and quantitative real-time PCR was 500, 1000 and 100 copies/reaction, respectively. The established RT-LAMP assay was demonstrated to be a rapid screening tool for MERS-CoV infection, and could be suitable in resource-limited clinical sites and for field studies.
Coronavirus Infections
;
virology
;
DNA Primers
;
genetics
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Nucleic Acid Amplification Techniques
;
methods
;
Reverse Transcription
7.Evaluation of Seeplex(TM) RV Detection Kit for Detecting Rhinovirus, Human Metapneumovirus, and Coronavirus.
Heungsup SUNG ; Sook Ja PARK ; Young Dae WOO ; Byung Hoo CHOI ; Mi Na KIM
The Korean Journal of Laboratory Medicine 2008;28(2):109-117
BACKGROUND: Direct antigen test (DAT) and culture are primary tests to diagnose infections by respiratory viruses, but are mainly available for the traditional viral pathogens such as respiratory syncytial virus (RSV), influenza virus, parainfluenza virus (PIV), and adenovirus in clinical laboratories. The objective of this study was to evaluate a multiplex reverse transcriptase-PCR method using Seeplex(TM) RV Detection kit (Seegene, Korea) for the detection of rhinovirus, coronavirus, and human metapneumovirus (hMPV). METHODS: From January to May 2007, nasopharyngeal aspirates (NPAs) from pediatric patients negative for culture and DAT of traditional viral pathogens were tested with Seeplex(TM). All the amplicons were directly sequenced and homology of the sequences was searched in the National Center for Biotechnology Information (NCBI) database. Patients' medical records were reviewed for clinical and demographic features. RESULTS: Forty-seven (26.4%) of 178 NPAs were positive: 18 rhinovirus, 15 hMPV, 4 RSV A, 3 coronavirus OC43, 3 influenza virus A, 2 adenovirus, 1 coronavirus NL63, and 1 RSV B. Based on maximum identity, each of the sequences indicating rhinovirus, hMPV, and coronavirus OC43 matched to the corresponding viruses with homology of 94-98%, 96-99%, and 98-100%, respectively. Seeplex(TM) positive patients were 0-11 yr old with a male:female ratio of 1.5:1. Clinical diagnoses included 9 pneumonia, 6 bronchiolitis, 2 cold, 1 asthma exacerbation for rhinovirus; 10 pneumonia, 4 bronchiolitis, and 1 clinical sepsis for hPMV; and 1 pneumonia, 2 croup, and 1 cold for coronavirus. CONCLUSIONS: Multiplex reverse transcriptase-PCR method using Seeplex(TM) RV Detection kit is a reliable test to detect rhinovirus, hMPV, and coronavirus. It may improve the diagnostic sensitivity for RSV, influenza virus, PIV, and adenovirus.
Adolescent
;
Child
;
Child, Preschool
;
Coronavirus/classification/*isolation & purification
;
Coronavirus 229E, Human/classification/genetics/isolation & purification
;
Coronavirus OC43, Human/classification/genetics/isolation & purification
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Metapneumovirus/classification/genetics/*isolation & purification
;
Phylogeny
;
Reagent Kits, Diagnostic
;
Respiratory Tract Infections/*diagnosis/virology
;
Reverse Transcriptase Polymerase Chain Reaction/*methods
;
Rhinovirus/classification/genetics/*isolation & purification
;
Sequence Analysis, DNA
8.Diagnostic efficacy of three test kits for SARS-CoV-2 nucleic acid detection.
Lihua SHEN ; Fei HUANG ; Xiang CHEN ; Zuan XIONG ; Xiaoyu YANG ; Hui LI ; Feng CHENG ; Jian GUO ; Guofu GONG
Journal of Zhejiang University. Medical sciences 2020;49(2):185-190
OBJECTIVE:
To compare the diagnostic efficacy among three RT-PCR test kits for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection.
METHODS:
The throat swab samples from 40 hospitalized patients clinically diagnosed as coronavirus disease 2019 (COVID-19) and 16 hospitalized non-COVID-19 patients were recruited. The SARS-CoV-2 nucleic acid was detected in throat swab samples with RT-PCR test kits from Sansure Biotech ("Sansure" for short), Jiangsu Bioperfectus Technologies ("Bioperfectus" for short) and BGI Genomics ("BGI" for short). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Kappa value were analyzed. The viral nucleic acid was extracted from the throat swab samples by one-step cleavage and magnetic bead methods, and the efficacy of two extraction methods was also compared. The results of magnetic bead method for nucleic acid extraction by two different extractors (Sansure Natch CS S12C Fully Automated Nucleic Acid Extraction System vs. Tianlong NP968-C Nucleic Acid Extractor) were also compared.
RESULTS:
The sensitivity, specificity, PPV, NPV and kappa value were 95.00%, 87.50%, 95.00%, 87.50%and 0.825 for Sansure kit; 90.00%, 87.50%, 94.74%, 77.78%and 0.747 for the Bioperfectus kit, and 82.50%, 81.25%, 91.67%, 65.00%and 0.593 for the BGI kit, respectively. The positive, negative and total coincident rates and kappa value of viral nucleic acid detection results using the samples extracted by one-step cleavage and magnetic bead methods were 95.24%, 100.00%, 96.43%and 0.909, respectively, but the one-step cleavage method took only 25 min, while the magnetic bead method required 180 min. The positive, negative and total coincident rates and kappa value of viral nucleic acid detection results using the samples extracted by the two different nucleic acid extractors were 85.00%, 100.00%, 89.29% and 0.764, respectively.
CONCLUSIONS
The detection efficacy for SARS-CoV-2 nucleic acid by the Sansure kit is relatively higher and the one-step cleavage method has advantages of convenient operation and less time consuming.
Betacoronavirus
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
diagnosis
;
virology
;
Humans
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
virology
;
RNA, Viral
;
genetics
;
isolation & purification
;
Reagent Kits, Diagnostic
;
standards
9.SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases.
Protein & Cell 2012;3(11):803-805
Animals
;
Chiroptera
;
virology
;
Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
transmission
;
virology
;
Databases, Genetic
;
Genome, Viral
;
Humans
;
Male
;
Middle Aged
;
Middle East
;
Phylogeny
;
SARS Virus
;
classification
;
genetics
;
isolation & purification
;
Severe Acute Respiratory Syndrome
;
virology
10.Development and comparison of real-time and conventional RT-PCR assay for detection of human coronavirus NL63 and HKU1.
Rou-jian LU ; Ling-lin ZHANG ; Wen-jie TAN ; Wei-min ZHOU ; Zhong WANG ; Kun PENG ; Li RUAN
Chinese Journal of Virology 2008;24(4):305-311
We designed specific primers and fluorescence-labeled probes to develop real-time and conventional RT-PCR assays for detection of human coronavirus NL63 or HKU1. Subsequently, experiments were undertaken to assess diagnostic criteria such as specificity, sensitivity and reproducibility. The detection limit of the real-time RT-PCR assays was 10 RNA copies per reaction mixture. No cross-reactivity was observed between RNA samples derived from designed HCoV and other HCoV or human metapneumovirus. A total of 158 nasopharyngeal swab specimens collected from adult patients with acute respiratory tract infection in Beijing were screened for the presence of human coronavirus NL63 and HKU1 by using real-time RT-PCR and conventional RT-PCR method. The fluorescence quantitative RT-PCR method detected six specimens positive for human coronavirus NL63, five specimens positive for human coronavirus HKU1; and conventional RT-PCR method detected three HCoV-NL63 positive and three HCoV-HKU1 positive, respectively. The convention RT-PCR products of positive samples were obtained and sequence analysis confirmed the reliability of the above methods. In summary, the real-time RT-PCR assay for HCoV- NL63 or HKU1 was more sensitive than conventional RT-PCR and with less time (less than 4 hours) for completion. It may be suitable for molecular epidemiological surveillance and clinical diagnosis for human coronavirus NL63 and HKU1.
Coronavirus
;
classification
;
genetics
;
isolation & purification
;
Humans
;
Nasopharynx
;
virology
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
;
Sensitivity and Specificity