1.Replication and transmission mechanisms of highly pathogenic human coronaviruses.
Journal of Zhejiang University. Medical sciences 2020;49(1):324-339
The three known human highly pathogenic coronaviruses are severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human highly pathogenic coronaviruses are composed of non-structural proteins, structural proteins and accessory proteins. Viral particles recognize host receptors via spike glycoprotein (S protein), enter host cells by membrane fusion, replicate in host cells through large replication-transcription complexes, and promote proliferation by interfering with and suppressing the host's immune response. Human highly pathogenic coronaviruses are hosted by humans and vertebrates. Viral particles are transmitted through droplets, contact and aerosols or likely through digestive tract, urine, eyes and other routes. This review discusses the mechanisms of proliferation and transmission of highly pathogenic human coronaviruses based on the results of existing research, providing basis for future study on interrupting the transmission and pathogenicity of human highly pathogenic coronaviruses.
Animals
;
Betacoronavirus
;
physiology
;
Coronavirus Infections
;
immunology
;
transmission
;
virology
;
Humans
;
Middle East Respiratory Syndrome Coronavirus
;
physiology
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
transmission
;
virology
;
SARS Virus
;
physiology
;
Virus Replication
;
physiology
2.Development of serological detection assays for human coronavirus HKU1 infection and its application.
Wei-min ZHOU ; Wen-ling WANG ; Wen-jie TAN ; Ling-lin ZHANG ; Xiao YIN ; Rou-jian LU ; Hui-juan WANG
Chinese Journal of Experimental and Clinical Virology 2010;24(5):376-379
OBJECTIVETo express the nuclear capsid protein (N protein) and the spike protein (S protein) of HCoV-HKU1, and to develop the corresponding serum assay for antibody detection.
METHODSThe N protein of HCoV-HKU1 was expressed in E. Coli, anti-N antibody assay was established using Western Blotting with turn-based membrane. HCoV-HKU1 S protein was constructed in the eukaryotic expression plasmids, and confirmed by Western Blotting, S antibody assay was established using indirect immunofluorescence assay (IFA). We analyzed anti-S and anti-N antibody among 100 normal adult serum.
RESULTSExpression of S and N protein were confirmed; 100 normal adult serum were analyzed using the established serological detection assay, in which HCoV-HKU1 S antibody positive rate was 47%, N antibody positive rate was 48%, Both S and N antibodies positive were 21%, Both S and N antibodies negative were 22%. Co-detection S and N antibody was achieved 74% positive rate.
CONCLUSIONThe methods we established here could be used for serological analysis of HCoV-HKU1. Either detection of HCoV-HKU1 S or N antibodies achieved good results. Higher positive detection rate of anti-S or anti-N antibody was found in the normal adults.
Antibodies, Viral ; blood ; immunology ; Capsid Proteins ; genetics ; immunology ; Cell Line ; Coronavirus ; genetics ; immunology ; isolation & purification ; physiology ; Coronavirus Infections ; blood ; diagnosis ; immunology ; virology ; Humans ; Membrane Glycoproteins ; genetics ; immunology ; Serologic Tests ; methods ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins ; genetics ; immunology
3.Coronavirus Disease 2019 Influenza A in Children: An Observational Control Study in China.
Yang ZHAO ; De Lin SUN ; Heather C BOUCHARD ; Xin Xin ZHANG ; Gang WAN ; Yi Wei HAO ; Shu Xin HE ; Yu Yong JIANG ; Lin PANG
Biomedical and Environmental Sciences 2020;33(8):614-619
This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.8 years old) were compared with age- and sex-matched 69 hospitalized and 69 outpatient children with influenza A from a hospital in China. The participants' epidemiological history, family cluster, clinical manifestations, and blood test results were assessed. Compared with either inpatients or outpatients with influenza A, children with COVID-19 showed significantly more frequent family infections and higher ratio of low fever (< 37.3 °C), but shorter cough and fever duration, lower body temperature, and lower rates of cough, fever, high fever (> 39 °C), nasal congestion, rhinorrhea, sore throat, vomiting, myalgia or arthralgia, and febrile seizures. They also showed higher counts of lymphocytes, T lymphocyte CD8, and platelets and levels of cholinesterase, aspartate aminotransferase, lactate dehydrogenase, and lactic acid, but lower serum amyloid, C-reactive protein, and fibrinogen levels and erythrocyte sedimentation rate, and shorter prothrombin time. The level of alanine aminotransferase in children with COVID-19 is lower than that in inpatients but higher than that in outpatients with influenza A. Pediatric COVID-19 is associated with more frequent family infection, milder symptoms, and milder immune responses relative to pediatric influenza A.
Betacoronavirus
;
physiology
;
Case-Control Studies
;
Child
;
Coronavirus Infections
;
blood
;
epidemiology
;
immunology
;
virology
;
Female
;
Humans
;
Influenza, Human
;
blood
;
epidemiology
;
immunology
;
Male
;
Pandemics
;
Pneumonia, Viral
;
blood
;
epidemiology
;
immunology
;
virology
4.Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine.
Fang YAN ; Yujun ZHAO ; Yongting HU ; Jianyang QIU ; Wenxin LEI ; Wenhui JI ; Xuying LI ; Qian WU ; Xiumin SHI ; Zhong LI
Journal of Veterinary Science 2013;14(1):53-60
The protective efficacy of DNA plasmids encoding avian infectious bronchitis virus (IBV) S1, N, or M protein was investigated in chickens. Chickens were inoculated monovalently (with plasmid pVAX1-16S1, pVAX1-16M, or pVAX1-16N alone) or multivalently (combination of the three different plasmids, pVAX1-16S1/M/N). A prime-boost immunization protocol against IBV was developed. Chickens were immunized with the multivalent DNA vaccine twice and then boosted with an inactivated vaccine once. Antibody titers of the chickens immunized with pVAX1-16S1/M/N were much higher than those of the monovalent groups (p < 0.01). A protective rate up to 90% was observed in the pVAX1-16S1/M/N group. The serum antibody titers in the prime-boost birds were significantly higher than those of the multivalent DNA vaccine group (p < 0.01) but not significantly different compared to the inactivated vaccine group at 49 days of age. Additionally, the prime-boost group also showed the highest level of IBV-specific cellular proliferation compared to the monovalent groups (p < 0.01) but no significant difference was found compared to the multivalent DNA vaccine group, and the prime-boost group completely protected from followed viral challenge.
Aging
;
Animals
;
Antibodies, Viral/blood
;
Cell Proliferation
;
Chickens
;
Coronavirus Infections/prevention & control/*veterinary/virology
;
Immunization, Secondary/veterinary
;
Infectious bronchitis virus/*immunology
;
Poultry Diseases/*prevention & control/virology
;
T-Lymphocyte Subsets/cytology/physiology
;
Vaccines, DNA/immunology
;
Vaccines, Inactivated/immunology
;
Viral Vaccines/*immunology
5.Effect of soluble porcine aminopeptidase N on antibody production against porcine epidemic diarrhea virus.
Jin Sik OH ; Dae Sub SONG ; Jeong Sun YANG ; Ju Young SONG ; Han Sang YOO ; Yong Suk JANG ; Bong Kyun PARK
Journal of Veterinary Science 2004;5(4):353-357
A few members of coronavirus group I which includes porcine epidemic diarrhea virus (PEDV) use porcine aminopeptidase N (pAPN) as a cellular receptor. Cellular receptors play an important role in virus attachment and entry. However, the low permissiveness of PEDV to APN-expressing porcine cell lines has made it difficult to elucidate the role of pAPN in vitro. The purpose of this study was to prove whether the treatment of soluble pAPN could enhance the antibody production against PEDV in guinea pigs, rabbits and sows. The animals (20 guinea pigs, 8 rabbits and 20 sows) were divided into 4 groups. Group A was injected intramuscularly (IM) with soluble pAPN at one hour before intramuscular infection of PEDV on the same site, group B for IM simultaneous injection of pAPN and PEDV, and group C for IM injection of PEDV only. Group D served as a control of pAPN treatment or PEDV infection. Antibody production against PEDV was compared among groups at regular intervals. The results suggested that pAPN could enhance the antibody production against PEDV in guinea pigs and rabbits which are free of pAPN, however, the effect of pAPN treatment in sows was not clearly elucidated.
Animals
;
Antibodies, Viral/*blood
;
Antibody Formation
;
Antigens, CD13/*administration&dosage
;
Cercopithecus aethiops
;
Coronavirus/*immunology/physiology
;
Coronavirus Infections/immunology/*veterinary
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Female
;
Guinea Pigs
;
Immunoglobulin G/*blood
;
Immunoglobulin Isotypes
;
Injections, Intramuscular
;
Pregnancy
;
Rabbits
;
Solubility
;
Swine
;
Swine Diseases/*immunology
;
Vero Cells/virology
6.Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation.
Ying SHAN ; Zi-Qi LIU ; Guo-Wei LI ; Cong CHEN ; Hao LUO ; Ya-Jie LIU ; Xun-Hui ZHUO ; Xing-Fen SHI ; Wei-Huan FANG ; Xiao-Liang LI
Journal of Zhejiang University. Science. B 2018;19(7):570-580
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Active Transport, Cell Nucleus
;
Animals
;
Coronavirus Infections
;
immunology
;
veterinary
;
virology
;
Genes, Viral
;
Host-Pathogen Interactions
;
immunology
;
Interferons
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
Interleukins
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
NF-kappa B
;
metabolism
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
physiology
;
Porcine epidemic diarrhea virus
;
genetics
;
pathogenicity
;
physiology
;
Promoter Regions, Genetic
;
Swine
;
Swine Diseases
;
immunology
;
virology
7.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research